and

', we call the "principle of equivalence;" this principle is evidently intimately connected with the theorem of the equality between the inert and the gravitational mass, and signifies an extension of the principle of relativity to co-ordinate systems which are in non-uniform motion relatively to each other. In fact, through this conception we arrive at the unity of the nature of inertia and gravitation. For according to our way of looking at it, the same masses may appear to be either under the action of inertia alone (with respect to

) or under the combined action of inertia and gravitation (with respect to

'). The possibility of explaining the numerical equality of inertia and gravitation by the unity of their nature gives to the general theory of relativity, according to my conviction, such a superiority over the conceptions of classical mechanics, that all the difficulties encountered in development must be considered as small in comparison.

What justifies us in dispensing with the preference for inertial systems over all other co-ordinate systems, a preference that seems so securely established by experiment based upon the principle of inertia? The weakness of the principle of inertia lies in this, that it involves an argument in a circle: a mass moves without acceleration if it is sufficiently far from other bodies; we know that it is sufficiently far from other bodies only by the fact that it moves without acceleration. Are there, in general, any inertial systems for very extended portions of the space-time continuum, or, indeed, for the whole universe? We may look upon the principle of inertia as established, to a high degree of approximation, for the space of our planetary system, provided that we neglect the perturbations due to the sun and planets. Stated more exactly, there are finite regions, where, with respect to a suitably chosen space of reference, material particles move freely without acceleration, and in which the laws of the special theory of relativity, which have been developed above, hold with remarkable accuracy. Such regions we shall call "Galilean regions." We shall proceed from the consideration of such regions as a special case of known properties.

The principle of equivalence demands that in dealing with Galilean regions we may equally well make use of non-inertial systems, that is, such co-ordinate systems as, relatively to inertial systems, are not free from acceleration and rotation. If, further, we are going to do away completely with the difficult question as to the objective reason for the preference of certain systems of co-ordinates, then we must allow the use of arbitrarily moving systems of co-ordinates. As soon as we make this attempt seriously we come into conflict with that physical interpretation of space and time to which we were led by the special theory of relativity. For let