The previous developments are valid however rapidly the masses which generate the field may move relatively to our chosen system of quasi-Galilean co-ordinates. But in astronomy we have to do with masses whose velocities, relatively to the co-ordinate system employed, are always small compared to the velocity of light, that is, small compared to 1, with our choice of the unit of time. We therefore get an approximation which is sufficient for nearly all practical purposes if in (101) we replace the retarded potential by the ordinary (non-retarded) potential, and if, for the masses which generate the field, we put

Then we get for

and

the values

For