From this follows

If the universe is quasi-Euclidean, and its radius of curvature therefore infinite, then σ would vanish. But it is improbable that the mean density of matter in the universe is actually zero; this is our third argument against the assumption that the universe is quasi-Euclidean. Nor does it seem possible that our hypothetical pressure can vanish; the physical nature of this pressure can be appreciated only after we have a better theoretical knowledge of the electromagnetic field. According to the second of equations (123) the radius,

, of the universe is determined in terms of the total mass,

, of matter, by the equation

The complete dependence of the geometrical upon the physical properties becomes clearly apparent by means of this equation.

Thus we may present the following arguments against the conception of a space-infinite, and for the conception of a space-bounded, universe:—