Experiment 104. To show the action of the elastic walls of the arteries. Take a long glass or metal tube of small caliber. Fasten one end to the faucet of a water-pipe (one in a set bowl preferred) by a very short piece of rubber tube. Turn the water on and off alternately and rapidly, to imitate the intermittent discharge of the ventricles. The water will flow from the other end of the rubber pipe in jets, each jet ceasing the moment the water is shut off.
The experiment will be more successful if the rubber bulb attached to an ordinary medicine-dropper be removed, and the tapering glass tube be slipped on to the outer end of the rubber tube attached to the faucet.
Experiment 105. Substitute a piece of rubber tube for the glass tube, and repeat the preceding experiment. Now it will be found that a continuous stream flows from the tube. The pressure of water stretches the elastic tube, and when the stream is turned off, the rubber recoils on the water, and the intermittent flow is changed into a continuous stream.
Experiment 106. To illustrate some of the phenomena of circulation. Take a common rubber bulb syringe, of the Davidson, Household, or any other standard make. Attach a piece of rubber tube about six or eight feet long to the delivery end of the syringe.
To represent the resistance made by the capillaries to the flow of blood, slip the large end of a common glass medicine-dropper into the outer end of the rubber tube. This dropper has one end tapered to a fine point.
Place the syringe flat, without kinks or bends, on a desk or table. Press the bulb slowly and regularly. The water is thus pumped into the tube in an intermittent manner, and yet it is forced out of the tapering end of the glass tube in a steady flow.
Experiment 107. Take off the tapering glass tube, or, in the place of one long piece of rubber tube, substitute several pieces of glass tubing connected together by short pieces of rubber tubes. The obstacle to the flow has thus been greatly lessened, and the water flows out in intermittent jets to correspond to the compression of the bulb.
Chapter VIII.
Respiration.
202. Nature and Object of Respiration. The blood, as we have learned, not only provides material for the growth and activity of all the tissues of the body, but also serves as a means of removing from them the products of their activity. These are waste products, which if allowed to remain, would impair the health of the tissues. Thus the blood becomes impoverished both by the addition of waste material, and from the loss of its nutritive matter.
We have shown, in the preceding chapter, how the blood carries to the tissues the nourishment it has absorbed from the food. We have now to consider a new source of nourishment to the blood, viz., that which it receives from the oxygen of the air. We are also to learn one of the methods by which the blood gets rid of poisonous waste matters. In brief, we are to study the set of processes known as respiration, by which oxygen is supplied to the various tissues, and by which the principal waste matters, or chief products of oxidation, are removed.
Now, the tissues are continually feeding on the life-giving oxygen, and at the same time are continually producing carbon dioxid and other waste products. In fact, the life of the tissues is dependent upon a continual succession of oxidations and deoxidations. When the blood leaves the tissues, it is poorer in oxygen, is burdened with carbon dioxid, and has had its color changed from bright scarlet to purple red. This is the change from the arterial to venous conditions which has been described in the preceding chapter.
Now, as we have seen, the change from venous to arterial blood occurs in the capillaries of the lungs, the only means of communication between the pulmonary arteries and the pulmonary veins. The blood in the pulmonary capillaries is separated from the air only by a delicate tissue formed of its own wall and the pulmonary membrane. Hence a gaseous interchange, the essential step in respiration, very readily takes place between the blood and the air, by which the latter gains moisture and carbon dioxid, and loses its oxygen. These changes in the lungs also restore to the dark blood its rosy tint.
The only condition absolutely necessary to the purification of the blood is an organ having a delicate membrane, on one side of which is a thin sheet of blood, while the other side is in such contact with the air that an interchange of gases can readily take place. The demand for oxygen is, however, so incessant, and the accumulation of carbon dioxid is so rapid in every tissue of the human body, that an All-Wise Creator has provided a most perfect but complicated set of machinery to effect this wonderful purification of the blood.