The entrance and the exit of air into the respiratory passages are accompanied with peculiar sounds which are readily heard on placing the ear at the chest wall. These sounds are greatly modified in various pulmonary diseases, and hence are of great value to the physician in making a correct diagnosis.

In a healthy adult, the number of respirations should be from 16 to 18 per minute, but they vary with age, that of a newly born child being 44 for the same time. Exercise increases the number, while rest diminishes it. In standing, the rate is more than when lying at rest. Mental emotion and excitement quicken the rate. The number is smallest during sleep. Disease has a notable effect upon the frequency of respirations. In diseases involving the lungs, bronchial tubes, and the pleura, the rate may be alarmingly increased, and the pulse is quickened in proportion.

210. The Mechanism of Breathing. The chest is a chamber with bony walls, the ribs connecting in front with the breastbone, and behind with the spine. The spaces between the ribs are occupied by the intercostal muscles, while large muscles clothe the entire chest. The diaphragm serves as a movable floor to the chest, which is an air-tight chamber with movable walls and floor. In this chamber are suspended the lungs, the air cells of which communicate with the outside through the bronchial passages, but have no connection with the chest cavity. The thin space between the lungs and the rib walls, called the pleural cavity, is in health a vacuum.

Now, when the diaphragm contracts, it descends and thus increases the depth of the chest cavity. A quantity of air is now drawn into the lungs and causes them to expand, thus filling up the increased space. As soon as the diaphragm relaxes, returning to its arched position and reducing the size of the chest cavity, the air is driven from the lungs, which then diminish in size. After a short pause, the diaphragm again contracts, and the same round of operation is constantly repeated.

The walls of the chest being movable, by the contractions of the intercostals and other muscles, the ribs are raised and the breastbone pushed forward. The chest cavity is thus enlarged from side to side and from behind forwards. Thus, by the simultaneous descent of the diaphragm and the elevation of the ribs, the cavity of the chest is increased in three directions,—downwards, side-ways, and from behind forwards.

It is thus evident that inspiration is due to a series of muscular contractions. As soon as the contractions cease, the elastic lung tissue resumes its original position, just as an extended rubber band recovers itself. As a result, the original size of the chest cavity is restored, and the inhaled air is driven from the lungs. Expiration may then be regarded as the result of an elastic recoil, and not of active muscular contractions.

Fig. 91.—Diagrammatic Section of the Trunk. (Showing the expansion of the chest and the movement of the ribs by action of the lungs.) [The dotted lines indicate the position during inspiration.]

211. Varieties of Breathing. This is the mechanism of quiet, normal respiration. When the respiration is difficult, additional forces are brought into play. Thus when the windpipe and bronchial tubes are obstructed, as in croup, asthma, or consumption, many additional muscles are made use of to help the lungs to expand. The position which asthmatics often assume, with arms raised to grasp something for support, is from the need of the sufferer to get a fixed point from which the muscles of the arm and chest may act forcibly in raising the ribs, and thus securing more comfortable breathing.