The ciliary muscle is thus known as the muscle of accommodation, because it has the power to accommodate the eye to near and distant objects. In this respect it corresponds in its use to the adjusting screw in the opera-glass and the microscope.
330. The Eye Compared to the Photographic Camera. As an optical instrument, the eye may be aptly compared, in many particulars, to the photographic camera. The latter, of course, is much simpler in structure. The eyelid forms the cap, which being removed, the light from the object streams through the eye and passes across the dark chamber to the retina behind, which corresponds to the sensitive plate of the camera. The transparent structures through which the rays of light pass represent the lenses. To prevent any reflected light from striking the plate and interfering with the sharpness of the picture, the interior of the photographic camera box is darkened. The pigmented layer of the choroid coat represents this blackened lining.
In the camera, the artist uses a thumb-screw to bring to a focus on the sensitive plate the rays of light coming from objects at different distances. Thus the lens of the camera may be moved nearer to or farther from the object. In order to obtain clear images, the same result must be accomplished by the eye. When the eye is focused for near objects, those at a distance are blurred, and when focused for distant objects, those near at hand are indistinct. Now, in the eye there is no arrangement to alter the position of the lenses, as in the camera, but the same result is obtained by what is called “accommodation.”
Again, every camera has an arrangement of diaphragms regulating the amount of light. This is a rude contrivance compared with the iris, which by means of its muscular fibers can in a moment alter the size of the pupil, thus serving a similar purpose.
Fig. 130.—Illustrating the manner in which the Image of an Object is brought to a Focus in a Photographer’s Camera.
331. The Refractive Media of the Eye. The eye is a closed chamber into which no light can pass but through the cornea. All the rays that enter the eye must also pass through the crystalline lens, which brings them to a focus, as any ordinary lens would do.
Now, if the media through which the light from an object passes to reach the retina were all of the same density as the air, and were also plane surfaces, an impression would be produced, but the image would not be distinct. The action of the lens is aided by several refractive media in the eye. These media are the cornea, the aqueous humor, and the vitreous humor. By reason of their shape and density these media refract the rays of light, and bring them to a focus upon the retina, thus aiding in producing a sharp and distinct image of the object. Each point of the image being the focus or meeting-place of a vast number of rays coming from the corresponding point of the object is sufficiently bright to stimulate the retina to action.[[44]]
Thus, the moment rays of light enter the eye they are bent out of their course. By the action of the crystalline lens, aided by the refractive media, the rays of light that are parallel when they fall upon the normal eye are brought to a focus on the retina.