Sometimes the pupa is surrounded by a silken cocoon, either thick, as the cocoon of some moths, or thin, as are the cocoons of bees. These cocoons are spun by the larvæ as their last toil before assuming the restful pupa state. The length of time in the pupa-stage is very various, lasting from a few days to as many months. Sometimes insects which are two-brooded remain as pupa but a few days in summer, while in winter they are months passing the quiescent period. Our cabbage-butterfly illustrates this peculiarity. Others, like the Hessian-fly and codling-moth, remain through the long, cold months as larvæ. How wonderful is this! The first brood of larvæ change to pupæ at once, the last brood, though the weather be just as hot, wait over inside the cocoon till the warm days of coming spring.
THE IMAGO STAGE.
This term refers to the last or winged form, and was given by Linné because the image of the insect is now real and not masked as when in the larva state. Now the insect has its full-formed legs and wings, its compound eyes, complex mouth-parts, and the fully developed sex-organs. In fact, the whole purpose of the insect now seems to be to reproduce itself. Many insects do not even eat, only flit in merry marriage mood for a brief space, when the male flees this life to be quickly followed by the female, she only waiting to place her eggs where the prospective infants may find suitable food. Some insects not only place their eggs, but feed and care for their young, as is true of ants, wasps and bees. Again, as in case of some species of ants and bees, abortive females perform all, or most of the labor in caring for the young. The life of the imago also varies much as to duration. Some live but for a day, others make merry for several days, while a few species live for months. Very few imagos survive the whole year.
INCOMPLETE TRANSFORMATIONS.
Some insects, like the bugs, lice, grasshoppers and locusts, are quite alike at all stages of growth, after leaving the egg. The only apparent difference is the smaller size and the absence or incomplete development of the wings in the larvæ and pupæ. The habits and structure from first to last seem to be much the same. Here, as before, the full development of the sex-organs occurs only in the imago.
ANATOMY AND PHYSIOLOGY OF THE HONEY-BEE.
With a knowledge of the anatomy and some glimpses of the physiology of insects in general, we shall now find it easy to learn the special anatomy and physiology of the highest insects of the order.
THREE KINDS OF BEES IN EACH FAMILY.
As we have already seen, a very remarkable feature in the economy of the honey-bee, described even by Aristotle, which is true of many other bees, and also of ants and many wasps, is the presence in each family of three distinct kinds, which differ in form, color, structure, size, habits and function. Thus we have the queen, a number of drones, and a far greater number of workers. Huber, Bevan, Munn and Kirby also speak of a fourth kind blacker than the usual workers. These are accidental, and are, as conclusively shown by Von Berlepsch, ordinary workers, more deeply colored by loss of hair, dampness, or some other atmospheric condition. American apiarists are too familiar with these black bees, for after our severe winters they prevail in the colony, and, as remarked by the noted Baron, "They quickly disappear." Munn also tells of a fifth kind, with a top-knot, which appears at swarming seasons. I am at a great loss to know what he refers to, unless it be the pollen masses of the asclepias or milk-weed, which sometimes fasten to our bees and become a severe burden.