* * * * * * * *
According to Schopenhauer, the measure of reverence that one can feel is a measure of one's own intrinsic value. Tell me how much respect you can feel, and I shall tell you what is your worth. It is certainly not necessary to emphasize this quality specially in the case of Einstein, for there are other points of vantage from which we may form an estimate of his excellence. Nevertheless, I make special mention of the circumstance to give an indication of the difference between a revolutionary discoverer and revolutionary pioneers in other fields. It is particularly noticeable that inborn respect is seldom found in modernists of Art. The only means of propaganda known to them consists in a passionate denunciation of what has been developed historically by gradual and patient effort; their retrospect consists of unmitigated contempt; they profess to be disciples only of what is most recent, remaining confined within the narrow circle surrounding their own ego. The horizon of the discoverer has a different radius. He takes over responsibility for the future by never ceasing his offerings at the altar of the Past. There is probably no discoverer who is devoid of this characteristic, but I should like to emphasize that, among all the scientists with whom I am acquainted, no one recognizes the merit of others so warmly as Einstein. He becomes carried away with enthusiasm when he talks of great men, or of such as appear great to him. His Valhalla is not, of course, the same as that favoured by Encyclopædias, and many a one whom we rank as a Sirius among men is to be found lower than the sixth order of magnitude in Einstein's list. Nevertheless, the number of selection of constellations is no mean one, and the reverence that was originally inspired by reasoned thought has become infused in his temperament and become a part of his emotional self.
One need only mention the name of Newton—and even this is scarcely necessary, for Newton seems always near at hand; if I happen to start with Descartes or Pascal, it does not take long before we arrive at Newton, ἄνδρα μοῐ ἔννεπη!
Once we began with Laplace; and it seemed almost as if the "Traité de la méchanique céleste" was to become the subject of discussion. But Einstein left his seat, and, taking up a position in front of his series of portraits on the wall, he meditatively passed his hand through his hair, and declared:
"In my opinion the greatest creative geniuses are Galilei and Newton, whom I regard in a certain sense as forming a unity. And in this unity Newton is he who has achieved the most imposing feat in the realm of science. These two were the first to create a system of mechanics founded on a few laws and giving a general theory of motions, the totality of which represents the events of our world."
Interrupting his remarks, I asked: "Can Galilei's fundamental law of inertia (Newton's First Law of Motion) be said to be a law deduced from experience? My reason for asking is that the whole of natural science is a science of experience, and not merely something based on speculation. It might easily suggest itself to one that an elementary law like that of Galilei or Newton could be derived from our everyday experience. But, if this is the case, how is it that science had to wait so long before this simple fact was discovered? Experience is as old as the hills; why did the law of inertia not make its appearance at the very beginning, when Nature was first subjected to inquiry?"
"By no means!" replied Einstein. "The discovery of the law of rectilinear motion of a body under no external influences is not at all a result of experience. On the contrary! A circle, too, is a simple line of motion, and has often been proclaimed as such by predecessors of Newton, for example, by Aristoteles. It required the enormous power of abstraction possessed only by a giant of reason to stabilize rectilinear motion as the fundamental form."
To this may be added that before and even after the time of Galilei, not only the circle but also other non-rectilinear lines have been regarded even by serious thinkers as the primary lines given by Nature; these thinkers even dared to apply their curvilinear views to explaining world phenomena that could be made clear only after Galilei's abstraction had been accepted.
I asked whether the theory of gravitation was already implicitly contained in Galilei's Laws of Falling Bodies. Einstein's answer was in the negative: the gravitational theory falls entirely to the credit of Newton, and the greatness of this intellectual achievement remains unimpaired even if the efforts of certain forerunners are recognized. He mentioned Robert Hooke, whom, among others, Schopenhauer sets up against Newton, with absolute injustice and from petty feelings of antipathy, which takes its origin from Schopenhauer's unmathematical type of mind. The vast difference between Hooke's preliminary attempts at explaining gravitation, and Newton's monumental structure, was beyond his power of discernment.
*Schopenhauer (vol. II. of the Parerga) uses two arguments to discredit Newton. Firstly, he refers to two original works, both of which he misinterprets; secondly, he undertakes a psychological analysis of Newton. He uses psychological means, which would be about equally reasonable as applying the Integral Calculus to proving facts of Ethical Psychology, and he arrives at the conclusion that priority in discovering the law of gravitation is due to some one else; Hooke is pictured as having been treated like Columbus: we now hear of "America," and likewise "Newton's Gravitational System"!