At that time, early in 1916, only a few members of the Literary Society divined who it was that was enjoying their hospitality. In the eyes of Berlin, Einstein's star was beginning its upward course, but was still too near the horizon to be visible generally. My own vision, sharpened by the French lecture and by a friend who was a physicist, anticipated events, and already saw Einstein's star at its zenith, although I was not even aware at that time that Poincaré had in the meantime overcome his doubts and had fully recognized the lasting importance of Einstein's researches. I had the instinctive feeling that I was sitting next to a Galilei. The fanfares sounded in the following years as a sign of appreciation by his contemporaries were only a fuller instrumentation of the music of destiny which had vibrated in my ears ever since that time.

I recollect one little incident: one of these lovers of literature, who was, however, totally ignorant of natural science, had accidentally seen several learned articles dealing with Einstein's Reports for the Academy, and had preserved the cuttings in his pocket-book. He considered this a fitting opportunity for enlightenment. Surely a brief question would suffice to guide one through these intricate channels. "Professor, will you kindly tell me the meaning of potential, invariant, contravariant, energy-tensor, scalar, relativity-postulate, hyper-Euclidean, and inertial system? Can you explain them to me in a few words?"—"Certainly," said Einstein, "those are merely technical expressions!" That was the end of the little lesson.

Far into the night three of us sat in a café while Einstein gently lifted the veil from his newest discovery for the benefit of my journalist friend and myself. We gathered from his remarks that a Special Theory of Relativity formed a prelude to a general theory which embraced the problem of gravitation in its widest sense, and hence also the physical constitution of the world. What interested me apart from this theme, which was, of course, only touched upon lightly, was the personal question in its psychological aspect.

"Professor," said I, "such investigations must involve enormous mental excitement. I imagine that there lurks behind every solved problem ever and again some new problem with a threatening or a fascinating aspect, as the case may be, each one calling up a tumult of emotion in its author. How do you succeed in mastering this difficulty? Are you not continually tormented by restless thoughts that noisily invade your dreams? Do you ever succeed at all in enjoying undisturbed slumber?"

The very tone in which the answer was given showed clearly how free he felt himself of such nervous troubles which usually oppress even the mediocre thinker. It is fortunate that such affections do not penetrate to his high level. "I break off whenever I wish," he said, "and banish all difficulties when the hour for sleep arrives. Thinking during dreams, as in the case of artists, such as poets and composers, by which they weave the thread of day on into the night, is quite foreign to me. Nevertheless, I must confess that at the very beginning, when the special theory of relativity began to germinate in me, I was visited by all sorts of nervous conflicts. When young I used to go away for weeks in a state of confusion, as one who at that time had yet to overcome the stage of stupefaction in his first encounter with such questions. Things have changed since then, and I can assure you that there is no need to worry about my rest."

"Notwithstanding," I answered, "cases may arise in which a certain result is to be verified by observation and experiment. This might easily give rise to nerve-racking experiences. If, for instance, a theory leads to a calculation which does not agree with reality, the propounder must surely feel considerably oppressed by this mere possibility. Let us take a particular event. I have heard that you have made a new calculation of the path of the planet Mercury on the basis of your doctrine. This must certainly have been a laborious and involved piece of work. You were firmly convinced of the theory, perhaps you alone. It had not yet been verified by an actual fact. In such cases conditions of great psychological tension must surely assert themselves. What in Heaven's name will happen if the expected result does not appear? What if it contradicts the theory? The effect on the founder of the theory cannot even be imagined!"

"Such questions," said Einstein, "did not lie in my path. That result could not be otherwise than right. I was only concerned in putting the result into a lucid form. I did not for one second doubt that it would agree with observation. There was no sense in getting excited about what was self-evident."

Let us now consider several facts of natural science, apart from this chat, but suggested by it, which caused Einstein little excitement, but the whole world generally, so much the more. By way of illustration we shall link them up with the result of a forerunner who, like Einstein, fixed on paper what should happen in the heavens.

Formerly, whenever one wished to play a particularly effective trump card in favour of research work it was customary to quote the achievement of the French astronomer Leverrier who, pen in hand, established the material existence of a planet at that time quite unknown and unnoticed. Certain disturbances in the orbit of the planet Uranus, which was regarded as being the most distant of the wandering stars, at that time had caused him to believe in the certainty of the existence of a still more distant planet, and by using merely the theoretical methods of celestial mechanics in connexion with the problem of three bodies he succeeded in revealing what was hidden behind the visible constellations. He reported the result of his calculations to the Berlin Observatory about seventy-five years ago, as it was at that time in possession of the best instruments. It was then that the amazing event happened: on the very same evening an observer in Berlin, Gottfried Galle, discovered the predicted new star almost exactly at the point of the heavens for which it was prophesied, only half the moon's diameter from it. The new planet Neptune, the farthest outpost of our solar system, reposed as a prisoner in his telescope; the seemingly undiscoverable star had capitulated in the face of mental efforts of a mathematical scholar, who, in reasoning meditation, had sketched his curves in the quiet atmosphere of his study.

This was certainly bewildering enough, but nevertheless this incredible result which stirred the imagination so strongly was directly rooted in reality, lay on the path of research, followed of necessity from the laws of motion known at that time, and disclosed itself as a new proof of the doctrines of astronomy which had long been recognized as supreme and incontestable. Leverrier had not created these, but had found them ready; he applied them with the mind of genius. Anyone who nowadays is sufficiently trained to work through the highly complicated calculation of Leverrier has every reason to marvel at a work which is entirely mathematical throughout.