For the curvature has its concave side towards the sun, as is easy to see, once the phenomenon is regarded as possible. It is as if the ray were directly subject to gravitation. Let us take two stars, one on each side of the sun. On account of the concavities the eye receives rays from them under a greater visual angle than if the rays were straight, and interprets this angle as denoting a greater distance between the sources of light, that is, it sees the two stars farther apart than in the case of rectilinear propagation.

By how much farther apart? The preceding calculation and the subsequent direct observation demanded incredible delicacy of measurement. If we suppose the whole arc of the heavens divided into easily picturable units such as degrees, then the apparent width of the moon is about half a degree. We may still easily imagine the thirtieth part of this, namely, a minute of arc. But the sixtieth part of the latter, the second of arc, vanishes almost out of the range of sense-perception. And it was just this minute measure that came into question, for the theory which had been developed from pure thought predicted a deflection of seconds of arc. This corresponds to about a hairbreadth when seen at a distance of 17 yards, or to the thickness of a match at a distance of over half a mile.

One of the greatest problems of the most comprehensive science depended on this unthinkably small measure.

In no sense did Einstein himself entertain a possibility of doubt.

On repeated occasions before May 1919 I had opportunities of questioning him on this point. There was no shadow of a scruple, no ominous fears clouded his anticipations. Yet great things were at stake.

Observation was to show "the correctness of Einstein's world system" by a fact clearly intelligible to the whole world, one depending on a very sensitive test of less than two seconds of arc.

"But, Professor," said I, on various occasions, "what if it turns out to be more or less? These things are dependent on apparatus that may be faulty, or on unforeseen imperfections of observation." A smile was Einstein's only answer, and this smile expressed his unshakeable faith in the instruments and the observers to whom this duty was to be entrusted.

Moreover, it is to be remarked that no great lengths of time were available for comfortable experimentation in taking this photographic record. For the greatest possible duration of a total eclipse of the sun viewed at a definite place amounts to less than eight minutes, so that there was no room for mishaps in this short space of time, nor must any intervening cloud appear. The kindly co-operation of the heavens was indispensable—and was not refused. The sun, in this case the darkened sun, brought this fact to light.

Two English expeditions had been equipped for the special occasion of the eclipse—one to proceed to Sobral and the other to the Island of Principe, off Portuguese Africa; they were sent officially with equipment provided in the main by the time-honoured Royal Society. Considering the times, it was regarded as the first symptom of the revival of international science, a praiseworthy undertaking. A huge apparatus was set into motion for a purely scientific object with not the slightest relation to any purpose useful in practical life. It was a highly technical investigation whose real significance could be grasped by only very few minds. Yet interest was excited in circles reaching far beyond that of the professional scientist. As the solar eclipse approached, the consciousness of amateurs became stirred with indefinite ideas of cosmic phenomena. And just as the navigator gazes at the Polar Star, so men directed their attention to the constellation of Einstein, which was not yet depicted in stellar maps, but, from which something uncomprehended, but undoubtedly very important, was to blaze forth.

In June it was announced that the star photographs had been successful in most cases, yet for weeks, nay for months, we had to exercise patience. For the photographs, although they required little time to be taken, took much longer to develop and, above all, to be measured; in view of the order of smallness of the distances to be compared, this was a difficult and troublesome task, for the points of light on the plate did not answer immediately with Yes or No, but only after mechanical devices of extreme delicacy had been carefully applied.