The action of the fish on the human organs is transmitted and intercepted by the same bodies that transmit and intercept the electrical current of a conductor charged by a Leyden jar, or Voltaic battery. Some anomalies, which we thought we observed, are easily explained, when we recollect that even metals (as is proved from their ignition when exposed to the action of the battery) present a slight obstacle to the passage of electricity; and that a bad conductor annihilates the effect, on our organs, of a feeble electric charge, whilst it transmits to us the effect of a very strong one. The repulsive force which zinc and silver exercise together being far superior to that of gold and silver, I have found that when a frog, prepared and armed with silver, is galvanized under water, the conducting arc of zinc produces contraction as soon as one of its extremities approaches the muscles within three lines distance; while an arc of gold does not excite the organs, when the stratum of water between the gold and the muscles is more than half a line thick. In the same manner, by employing a conducting arc composed of two pieces of zinc and silver soldered together endways; and resting, as before, one of the extremities of the metallic circuit on the femoral nerve, it is necessary, in order to produce contractions, to bring the other extremity of the conductor nearer and nearer to the muscles, in proportion as the irritability of the organs diminishes. Toward the end of the experiment the slightest stratum of water prevents the passage of the electrical current, and it is only by the immediate contact of the arc with the muscles, that the contractions take place. These effects are, however, dependent on three variable circumstances; the energy of the electromotive apparatus, the conductibility of the medium, and the irritability of the organs which receive the impressions: it is because experiments have not been sufficiently multiplied with a view to these three variable elements, that, in the action of electric eels and torpedos, accidental circumstances have been taken for absolute conditions, without which the electric shocks are not felt.

In wounded gymnoti, which give feeble but very equal shocks, these shocks appeared to us constantly stronger on touching the body of the fish with a hand armed with metal, than with the naked hand. They are stronger also, when, instead of touching the fish with one hand, naked, or armed with metal, we press it at once with both hands, either naked or armed. These differences become sensible only when one has gymnoti enough at disposal to be able to choose the weakest; and when the extreme equality of the electric discharges admits of distinguishing between the sensations felt alternately by the hand naked or armed with a metal, by one or both hands naked, and by one or both hands armed with metal. It is also in the case only of small shocks, feeble and uniform, that they are more sensible on touching the gymnotus with one hand (without forming a chain) with zinc, than with copper or iron.

Resinous substances, glass, very dry wood, horn, and even bones, which are generally believed to be good conductors, prevent the action of the gymnoti from being transmitted to man. I was surprised at not feeling the least shock on pressing wet sticks of sealing-wax against the organs of the fish, while the same animal gave me the most violent strokes, when excited by means of a metallic rod. M. Bonpland received shocks, when carrying a gymnotus on two cords of the fibres of the palm-tree, which appeared to us extremely dry. A strong discharge makes its way through very imperfect conductors. Perhaps also the obstacle which the conductor presents renders the discharge more painful. I touched the gymnotus with a wet pot of brown clay, without effect; yet I received violent shocks when I carried the gymnotus in the same pot, because the contact was greater.

When two persons, insulated or otherwise, hold each other's hands, and only one of these persons touches the fish with the hand, either naked or armed with metal, the shock is most commonly felt by both at once. However, it sometimes happens that, in the most severe shocks, the person who comes into immediate contact with the fish alone feels them. When the gymnotus is exhausted, or in a very reduced state of excitability, and will no longer emit strokes on being irritated with one hand, the shocks are felt in a very vivid manner, on forming the chain, and employing both hands. Even then, however, the electric shock takes place only at the will of the animal. Two persons, one of whom holds the tail, and the other the head, cannot, by joining hands and forming a chain, force the gymnotus to dart his stroke.

Though employing the most delicate electrometers in various ways, insulating them on a plate of glass, and receiving very strong shocks which passed through the electrometer, I could never discover any phenomenon of attraction or repulsion. The same observation was made by M. Fahlberg at Stockholm. That philosopher, however, has seen an electric spark, as Walsh and Ingenhousz had before him, in London, by placing the gymnotus in the air, and interrupting the conducting chain by two gold leaves pasted upon glass, and a line distant from each other. No person, on the contrary, has ever perceived a spark issue from the body of the fish itself. We irritated it for a long time during the night, at Calabozo, in perfect darkness, without observing any luminous appearance. Having placed four gymnoti, of unequal strength, in such a manner as to receive the shocks of the most vigorous fish by contact, that is to say, by touching only one of the other fishes, I did not observe that these last were agitated at the moment when the current passed their bodies. Perhaps the current did not penetrate below the humid surface of the skin. We will not, however, conclude from this, that the gymnoti are insensible to electricity; and that they cannot fight with each other at the bottom of the pools. Their nervous system must be subject to the same agents as the nerves of other animals. I have indeed seen, that, on laying open their nerves, they undergo muscular contractions at the mere contact of two opposite metals; and M. Fahlberg, of Stockholm, found that his gymnotus was convulsively agitated when placed in a copper vessel, and feeble discharges from a Leyden jar passed through its skin.

After the experiments I had made on gymnoti, it became highly interesting to me, on my return to Europe, to ascertain with precision the various circumstances in which another electric fish, the torpedo of our seas, gives or does not give shocks. Though this fish had been examined by numerous men of science, I found all that had been published on its electrical effects extremely vague. It has been very arbitrarily supposed, that this fish acts like a Leyden jar, which may be discharged at will, by touching it with both hands; and this supposition appears to have led into error observers who have devoted themselves to researches of this kind. M. Gay-Lussac and myself, during our journey to Italy, made a great number of experiments on torpedos taken in the gulf of Naples. These experiments furnish many results somewhat different from those I collected on the gymnoti. It is probable that the cause of these anomalies is owing rather to the inequality of electric power in the two fishes, than to the different disposition of their organs.

Though the power of the torpedo cannot be compared with that of the gymnotus, it is sufficient to cause very painful sensations. A person accustomed to electric shocks can with difficulty hold in his hands a torpedo of twelve or fourteen inches, and in possession of all its vigour. When the torpedo gives only very feeble strokes under water, they become more sensible if the animal be raised above the surface. I have often observed the same phenomenon in experimenting on frogs.

The torpedo moves the pectoral fins convulsively every time it emits a stroke; and this stroke is more or less painful, according as the immediate contact takes place by a greater or less surface. We observed that the gymnotus gives the strongest shocks without making any movement with the eyes, head, or fins.* (* The anal fin of the gymnoti only has a sensible motion when these fishes are excited under the belly, where the electric organ is placed.) Is this difference caused by the position of the electric organ, which is not double in the gymnoti? or does the movement of the pectoral fins of the torpedo directly prove that the fish restores the electrical equilibrium by its own skin, discharges itself by its own body, and that we generally feel only the effect of a lateral shock?

We cannot discharge at will either a torpedo or a gymnotus, as we discharge at will a Leyden jar or a Voltaic battery. A shock is not always felt, even on touching the electric fish with both hands. We must irritate it to make it give the shock. This action in the torpedos, as well as in the gymnoti, is a vital action; it depends on the will only of the animal, which perhaps does not always keep its electric organs charged, or does not always employ the action of its nerves to establish the chain between the positive and negative poles. It is certain that the torpedo gives a long series of shocks with astonishing celerity; whether it is that the plates or laminae of its organs are not wholly exhausted, or that the fish recharges them instantaneously.

The electric stroke is felt, when the animal is disposed to give it, whether we touch with a single finger only one of the surfaces of the organs, or apply both hands to the two surfaces, the superior and inferior, at once. In either case it is altogether indifferent whether the person who touches the fish with one finger or both hands be insulated or not. All that has been said on the necessity of a communication with the damp ground to establish a circuit, is founded on inaccurate observations.