The direction of the strata, of which we have just noticed the wonderful uniformity, is not entirely parallel with the longitudinal axes of the two coast chains, and the chain of Parime. The strata generally cut the former of those chains at an angle of 35 degrees, and their inclination towards the north-west becomes one of the most powerful causes of the aridity which prevails on the southern declivity* of the mountains of the coast. (* This southern declivity is however less rapid than the northern.) May we conclude that the direction of the eastern Cordillera of New Grenada, which is nearly north 45 degrees east from Santa Fe de Bogota, to beyond the Sierra Nevada de Merida, and of which the littoral chain is but a continuation, has had an influence on the direction (hor. 3 to 4) of the strata in Venezuela? That region presents a very remarkable loxodromism with the strata of mica-slate, grauwacke, and the orthoceratite limestone of the Alleghenies, and that vast extent of country (latitude 56 to 68 degrees) lately visited by Captain Franklin. The direction north-east to south-west prevails in every part of North America, as in Europe in the Fitchtelgebirge of Franconia, in Taunus, Westerwald, and Eifel; in the Ardennes, the Vosges, in Cotentin, in Scotland and in the Tarentaise at the south-west extremity of the Alps. If the strata of rocks in Venezuela do not exactly follow the direction of the nearest Cordillera, that of the shore, the parallelism between the axis of one chain, and the strata of the formations that compose it, are manifest in the Brazil group.* (* The strata of the primitive and intermediary rocks of Brazil run very regularly, like the Cordillera of Villarica (Serra do Espinhaco) hor. 1.4 or hor. 2 of the compass of Freiberg (north 28 degrees east.))

SECTION 3.
NATURE OF THE ROCKS. RELATIVE AGE AND SUPERPOSITION OF THE FORMATIONS. PRIMITIVE, TRANSITION, SECONDARY, TERTIARY, AND VOLCANIC STRATA.

The preceding section has developed the geographical limits of the formations, the extent of the direction of the zones of gneiss-granite, mica-slate-gneiss, clay-slate, sandstone and intermediary limestone, which come successively to light. We will now indicate succinctly the nature and relative age of these formations. To avoid confounding facts with geologic opinions I shall describe these formations, without dividing them, according to the method generally followed, into five groups—primitive, transition, secondary, tertiary and volcanic rocks. I was fortunate enough to discover the types of each group in a region where, before I visited it, no rock had been named. The great inconvenience of the old classification is that of obliging the geologist to establish fixed demarcations, while he is in doubt, if not respecting the spot or the immediate superposition, at least respecting the number of the formations which are not developed. How can we in many circumstances determine the analogy existing between a limestone with but few petrifactions and an intermediary limestone and zechstein, or between a sandstone superposed on a primitive rock and a variegated sandstone and quadersandstein, or finally, between muriatiferous clay and the red marl of England, or the gem-salt of the tertiary strata of Italy? When we reflect on the immense progress made within twenty-five years in the knowledge of the superposition of rocks, it will not appear surprising that my present opinion on the relative age of the formations of Equinoctial America is not identically the same with what I advanced in 1800. To boast of a stability of opinion in geology is to boast of an extreme indolence of mind; it is to remain stationary amidst those who go forward. What we observe in any one part of the earth on the composition of rocks, their subordinate strata and the order of their position are facts immutably true, and independent of the progress of positive geology in other countries; while the systematic names applied to any particular formation of America are founded only on the supposed analogies between the formations of America and those of Europe. Now those names cannot remain the same if, after further examination, the objects of comparison have not retained the same place in the geologic series; if the most able geologists now take for transition-limestone and green sandstone, what they took formerly for zechstein and variegated sandstone. I believe the surest means by which geologic descriptions may be made to survive the change which the science undergoes in proportion to its progress, will be to substitute provisionally in the description of formations, for the systematic names of red sandstone, variegated sandstone, zechstein and Jura limestone, names derived from American localities, as sandstone of the Llanos, limestone of Cumanacoa and Caripe, and to separate the enumeration of facts relative to the superposition of soils, from the discussion on the analogy of those soils with those of the Old World.*

(* Positive geography being nothing but a question of the series or succession (either simple or periodical) of certain terms represented by the formations, it may be necessary, in order to understand the discussions contained in the third section of this memoir, to enumerate succinctly the table of formations considered in the most general point of view.

1. Strata commonly called Primitive; granite, gneiss and mica-slate (or gneiss oscillating between granite and mica-slate); very little primitive clay-slate; weisstein with serpentine; granite with disseminated amphibole; amphibolic slate; veins and small layers of greenstone.

2. Transition strata, composed of fragmentary rocks (grauwacke), calcareous slate and greenstone, earliest remains of organized existence: bamboos, madrepores, producta, trilobites, orthoceratites, evamphalites). Complex and parallel formations; (a) Alternate beds of grey and stratified limestone, anthracitic mica-slate, anhydrous gypsum and grauwacke; (b) clay-slate, black limestone, grauwacke with greenstone, syenite, transition-granite and porphyries with a base of compact felspar; (c) Euphotides, sometimes pure and covered with jasper, sometimes mixed with amphibole, hyperstein and grey limestone; (d) Pyroxenic porphyries with amygdaloides and zirconian syenites.

3. Secondary strata, presenting a much smaller number of monocotyledonous plants; (a) Co-ordinate and almost contemporary formations with red sandstone (rothe todtes liegende), quartz-porphyry and fern-coal. These strata are less connected by alternation than by opposition. The porphyries issue (like the trachytes of the Andes) in domes from the bosom of intermediary rocks. Porphyritic breccias which envelope the quartzose porphyries. (b) Zechstein or Alpine limestone with marly, bituminous slate, fetid limestone and variegated gypsum (Productus aculeatus). (c) Variegated sandstone (bunter sandstein) with frequent beds of limestone; false oolites; the upper beds are of variegated marl, often muriatiferous (red marl, salzthon) with hydrated gypsum and fetid limestone. The gem-salt oscillates from zechstein to muschelkalk. (d) Limestone of Gottingen or muschelkalk alternating towards the top with white sandstone or brittle sandstein. (Ammonitis nodosus, encrinites, Mytilus socialis): clayey marl is found at the two extremities of muschelkalk. (e) White sandstone, brittle sandstein, alternating with lias, or limestone with graphites; a quantity of dicotyledonous mixed with monocotyledonous plants. (f) Jura limestone of complex formation; a quantity of sandy intercalated marl. We most frequently observe, counting from below upwards; lias (marly limestone with gryphites), oolites, limestone with polypi, slaty limestone with fish, crustacea, and globules of oxide of iron (Amonites planulatus, Gryphaea arcuata). (g) Secondary sandstone with lignites; iron sand; Wealden clay; greensand or green sandstone; (h) Chlorite; tufted and white chalk; (planerkalk, limestone of Verona.)

4. Tertiary strata, showing a much smaller number of dicotyledonous plants. (a) Clay and tertiary sandstone with lignites; plastic clay; mollasse and nagelfluhe, sometimes alternating where chalk is wanting, with the last beds of Jura limestone; amber. (b) Limestone of Paris or coarse limestone, limestone with circles, limestone of Bolca, limestone of London, sandy limestone of Bognor; lignites. (c) Silicious limestone and gypsum with fossil bones alternating with marl. (d) Sandstone of Fontainebleau. (e) Lacustrine soil with porous millstone grit. (e) Alluvial deposits.)

1. CO-ORDINATE FORMATIONS OF GRANITE, GNEISS AND MICA-SLATE.