9. SANDSTONE OF THE BERGANTIN.

Between Nueva Barcelona and the Cerro del Bergantin a quartzose sandstone covers the Jura limestone of Cumanacoa. Is it an arenaceous rock analogous to green sandstone, or does it belong to the sandstone of Cocollar? In the latter case its presence seems to prove still more clearly that the limestones of Cumanacoa and Caripe are only two parts of the same system, alternating with sandstone, sometimes quartzose, sometimes slaty.

10. GYPSUM OF THE LLANOS OF VENEZUELA.

Deposits of lamellar gypsum, containing numerous strata of marl, are found in patches on the steppes of Caracas and Barcelona; for instance, in the table-land of San Diego, between Ortiz and the Mesa de Paja; and near the mission of Cachipo. They appeared to me to cover the Jura limestone of Tisnao, which is analogous to that of Caripe, where we find it mixed with masses of fibrous gypsum. I have not given the name formation either to the sandstone of the Orinoco, of Cocollar, of Bergantin or to the gypsum of the Llanos, because nothing as yet proves the independence of those arenaceous and gypsous soils. I think it will one day be ascertained that the gypsum of the Llanos covers not only the Jura limestone of the Llanos, but that it is sometimes enclosed in it like the gypsum of the Golfo Triste on the east of the Alpine limestone of Cumanacoa. The great masses of sulphur found in the layers, almost entirely clayey, of the steppes (at Guayuta, valley of San Bonifacio, Buen Pastor, confluence of the Rio Pao with the Orinoco) may possibly belong to the marl of the gypsum of Ortiz. These clayey beds are more worthy of attention since the interesting observations of Von Buch and several other celebrated geologists respecting the cavernosity of gypsum, the irregularity of the inclination of its strata and its parallel position with the two declivities of the Hartz and the upheaved chain of the Alps; while the simultaneous presence of sulphur, oligist iron and the sulphurous acid vapours which precede the formation of sulphuric acid, seem to manifest the action of forces placed at a great depth in the interior of the globe.

11. FORMATION OF MURIATIFEROUS CLAY (WITH BITUMEN AND LAMELLAR GYPSUM) OF THE PENINSULA OF ARAYA.

This soil presents a striking analogy with salzthon or leberstein (muriatiferous clay) which I have found accompanying gem-salt in every zone. In the salt-pits of Araya (Haraia) it attracted the attention of Peter Martyr d'Anghiera at the beginning of the sixteenth century. It probably facilitated the rupture of the earth and the formation of the gulf of Cariaco. This clay is of a smoky colour, impregnated with petroleum, mingled with lamellar and lenticular gypsum and sometimes traversed by small veins of fibrous gypsum. It incloses angular and less friable masses of dark brown clay with a slaty and sometimes conchoidal fracture. Muriate of soda is found in particles invisible to the naked eye. The relations of position or superposition between this soil and the tertiary rocks does not appear sufficiently clear to enable me to pronounce with certainty on this element, the most important of positive geology. The co-ordinate layers of gem-salt, muriatiferous clay and gypsum present the same difficulties in both hemispheres; these masses, the forms of which are very irregular, everywhere exhibit traces of great commotions. They are scarcely ever covered by independent formations; and after having been long believed, in Europe, that gem-salt was exclusively peculiar to Alpine and transition limestone, it is now still more generally admitted, either from reasoning founded on analogy or from suppositions on the prolongation of the strata, that the true location of gem-salt is found in variegated sandstone (buntersandstein). Sometimes gem-salt appears to oscillate between variegated sandstone and muschelkalk.

I made two excursions on the peninsula of Araya. In the first I was inclined to consider the muriatiferous clay as subordinate to the conglomerate (evidently of tertiary formation) of the Barigon and of the mountain of the castle of Cumana, because a little to the north of that castle I had found shelves of hardened clay containing lamellar gypsum inclosed in the tertiary strata. I believed that the muriatiferous clay might alternate with the calcareous conglomerate of Barigon; and near the fishermen's huts situated opposite Macanao, conglomerate rocks appeared to me to pierce through the strata of clay. During a second excursion to Maniquarez and the aluminiferous slates of Chaparuparu, the connexion between tertiary strata and bituminous clay seemed to me somewhat problematical. I examined more particularly the Penas Negras near the Cerro de la Vela, east-south-east of the ruined castle of Araya. The limestone of the Penas is compact, bluish grey and almost destitute of petrifactions. It appeared to me to be much more ancient than the tertiary conglomerate of Barigon, and I saw it covering, in concordant position, a slaty clay, somewhat analogous to muriatiferous clay. I was greatly interested in comparing this latter formation with the strata of carburetted marl contained in the Alpine limestone of Cumanacoa. According to the opinions now most generally received, the rock of the Penas Negras may be considered as representing muschelkalk (limestone of Gottingen); and the saliferous and bituminous clay of Araya, as representing variegated sandstone; but these problems can only be solved when the mines of those countries are worked. Those geologists who are of opinion that the gem-salt of Italy penetrates into a stratum above the Jura limestone, and even the chalk, may be led to mistake the limestone of the Penas Negras for one of the strata of compact limestone without grains of quartz and petrifactions, which are frequently found amidst the tertiary conglomerate of Barigon and of the Castillo de Cumana; the saliferous clay of Araya would appear to them analogous to the plastic clay of Paris,* (* Tertiary sandstone with lignites, or molassus of Argovia.) or to the clayey shelves (dief et tourtia) of secondary sandstone with lignites, containing salt-springs, in Belgium and Westphalia. However difficult it may be to distinguish separately the strata of marl and clay belonging to variegated sandstone, muschelkalk, quadersandstein, Jura limestone, secondary sandstone with lignites (green and iron sand) and the tertiary strata lying above chalk, I believe that the bitumen which everywhere accompanies gem-salt, and most frequently salt-springs, characterizes the muriatiferous clay of the peninsula of Araya and the island of Marguerita, as linked with formations lying below the tertiary strata. I do not say that they are anterior to that formation, for since the publication of M. von Buch's observations on the Tyrol, we must no longer consider what is below, in space, as necessarily anterior, relatively to the epoch of its formation.

Bitumen and petroleum still issue from the mica-slate; these substances are ejected whenever the soil is shaken by a subterranean force (between Cumana, Cariaco and the Golfo Triste). Now, in the peninsula of Araya, and in the island of Marguerita, saliferous clay impregnated with bitumen is met with in connexion with this early formation, nearly as gem-salt appears in Calabria in flakes, in basins inclosed in strata of granite and gneiss. Do these circumstances serve to support that ingenious system, according to which all the co-ordinate formations of gypsum, sulphur, bitumen and gem-salt (constantly anhydrous) result from floods passing across the crevices which have traversed the oxidated crust of our planet, and penetrating to the seat of volcanic action. The enormous masses of muriate of soda recently thrown up by Vesuvius,* (* The ejected masses in 1822 were so considerable that the inhabitants of some villages round Vesuvius collected them for domestic purposes.) the small veins of that salt which I have often seen traverse the most recently ejected lavas, and of which the origin (by sublimation) appears similar to that of oligist iron deposited in the same vents,* (* Gay-Lussac on the action of volcanoes in the Annales de Chimie volume 22 page 418.) the layers of gem-salt and saliferous clay of the trachytic soil in the plains of Peru and around the volcano of the Andes of Quito are well worthy the attention of geologists who would discuss the origin of formations. In the present sketch I confine myself to the mere enumeration of the phenomena of position, indicating, at the same time, some theoretic views, by which observers in more advantageous circumstances than I was myself may direct their researches.

12. AGGLOMERATE LIMESTONE OF THE BARIGON, OF THE CASTLE OF CUMANA, AND OF THE VICINITY OF PORTO CABELLO.

This is a very complex formation, presenting that mixture and that periodical return of compact limestone, quartzose sandstone and conglomerates (limestone breccia) which in every zone peculiarly characterises the tertiary strata. It forms the mountain of the castle of San Antonio near the town of Cumana, the south-west extremity of the peninsula of Araya, the Cerro Meapire, south of Caraco and the vicinity of Porto Cabello. It contains (1) a compact limestone, generally of a whitish grey, or yellowish white (Cerro del Barigon), some very thin layers of which are entirely destitute of petrifactions, while others are filled with cardites, ostracites, pectens and vestiges of lithophyte polypi: (2) a breccia in which an innumerable number of pelagic shells are found mixed with grains of quartz agglutinated by a cement of carbonate of lime: (3) a calcareous sandstone with very fine rounded grains of quartz (Punta Arenas, west of the village of Maniquarez) and containing masses of brown iron ore: (4) banks of marl and slaty clay, containing no spangles of mica, but enclosing selenite and lamellar gypsum. These banks of clay appeared to me constantly to form the lower strata. There also belongs to this tertiary stratum the limestone tufa (fresh-water formation) of the valleys of Aragua near Vittoria, and the fragmentary rock of Cabo Blanco, westward of the port of La Guayra. I must not designate the latter by the name of nagelfluhe, because that term indicates rounded fragments, while the fragments of Cabo Blanco are generally angular, and composed of gneiss, hyaline quartz and chloritic slate, joined by a limestone cement. This cement contains magnetic sand,* (* This magnetic sand no doubt owes its origin to chloritous slate, which, in these latitudes, forms the bed of the sea.) madrepores, and vestiges of bivalve sea shells. The different fragments of tertiary strata which I found in the littoral Cordillera of Venezuela, on the two slopes of the northern chain, seem to be superposed near Cumana (between Bordones and Punta Delgada); in the Cerro of Meapire; on the [Alpine] limestone of Cumanacoa; between Porto Cabello and the Rio Guayguaza; as well as in the valleys of Aragua; on granite; on the western declivity of the hill formed by Cabo Blanco, on gneiss; and in the peninsula of Araya, on saliferous clay. But this is perhaps merely the effect of apposition.* (* An-nicht Auflagerung, according to the precise language of the geologists of my country.) If we would range the different members of the tertiary series according to the age of their formation we ought, I believe, to regard the breccia of Cabo Blanco with fragments of primitive rocks as the most ancient, and make it be succeeded by the arenaceous limestone of the castle of Cumana, without horned silex, yet somewhat analogous to the coarse limestone of Paris, and the fresh-water soil of Victoria. The clayey gypsum, mixed with calcareous breccia with madrepores, cardites and oysters, which I found between Carthagena and the Cerro de la Popa, and the equally recent limestones of Guadalope and Barbadoes (limestones filled with seashells resembling those now existing in the Caribbean Sea) prove that the latest deposited strata of the tertiary formation extend far towards the west and north.