We have hitherto considered that which belongs to our solare system — that world of material forms governed by the Sun — which includes the primary and secondary planets, comets of short and long periods of revolution, meteoric asteroids, which move thronged together in streams, either sporadically or in closed rings, and finally a luminous nebulous ring, that revolves round the Sun in the vicinity of the Earth, and for which, owing to its position, we may retain the name of zodiacal light. Every where the law of periodicity governs the motions of these bodies, however different may be the amount of tangential velocity, or the quantity of their agglomerated material parts; the meteoric asteroids which enter our atmosphere from the external regions of universal space are alone arrested in the course of their planetary revolution, and retained within the sphere of a larger planet. In the solar system, whose boundaries determine the attractive force of the central body, comets are made to revolve in their elliptical p 145 orbits at a distance 44 times greater than that of Uranus; may, in those comets whose nucleus appears to us, from its inconsiderable mass, like a mere passing cosmical cloud, the Sun exercises its attractive force on the outermost parts of the emanations radiating from the tail over a space of many millions of miles. Central forces, therefore, at once constitute and maintain the system.

Our Sun may be considered as at rest when compared to all the large and small, dense and almost vaporous cosmical bodies tht appertain to and revolve around it; but it actually rotates around the common center of gravity of the whole system, which occasionally falls within itself, that is to say, remains within the material circumference of the Sun, whatever changes may be assumed by the position of the planets. A very different phenomenon is that presented by the translatory motion of the Sun, that is, the progressive motion of the center of gravity of the whole solar system in universal space. Its velocity is such* that, according to Bessel, the relative motion of the Sun, and that of 61 Cygni, is not less in one day than 3,336,000 geographical miles.

[footnote] *Bessel, in Schum., 'Jahrb. für' 1839, s. 51; probably four millions of miles daily, in a relative velocity of at the least 3,336,000 miles, or more than couble the velocity of revolution of the Earth in her orbit round the Sun.

This change of the entire solar system would remain unknown to us, if the admirable exactness of our astronomical instruments of measurement, and the advancement recently made in the art of observing, did not cause our advance toward remote stars to be perceptible, like an approximation to the objects of a distant shore in apparent motion. The proper motion of the star 61 Cygni, for instance, is so considerable, that it has amounted to a whole degree in the course of 700 years.

The amount or quantity of these alterations in the fixed stars (that is to say, the changes in the relative position of self-luminous stars toward each other), can be determined with a greater degree of certainty than we are able to attach to the genetic explanation of the phenomenon. After taking into consideration what is due to the precession of the equinoxes, and the nutation of the earth's axis produced by the action of the Sun and Moon on the spheroidal figure of our globe, and what may be ascribed to the transmission of light, that is to say, to its aberration, and to the parallax formed by the diametrically opposite position of the Earth in its course round the Sun, we still find that there is a residual portion p 146 of the annual motion of the fixed stars due to the translation of the whole solar system in universal space, and to the true proper motion of the stars. The difficult problem of numerically separating these two elements, the true and the apparent motion, has been effected by the careful study of the direction of the motion of certain individual stars, and by the consideration of the fact that, if all the stars were in a state of absolute rest, they would appear perspectively to recede from the point in space toward which the Sun was directing its course. But the ultimate result of this investigation, confirmed by the calculus of probabilities, is, that our solar system and the stars both change their places in space. According to the admirable researches of d'Argelander at Abo, who has extended and more perfectly developed the work begun by William Herschel and Prevost, the Sun moves in the direction of the constellation Hercules, and probably, from the combination of the observations made of 537 stars, toward a point lying (at the equinox of 1792.5) at 257ºdegrees 49.'7 R.A., and 28ºdegrees 49.'7 N.D. It is extremely difficult, in investigations of this nature, to separate the absolute from the relative motion, and to determine what is aloone owing to the solar system.*

[footnote] *Regarding the motion of the solar system, according to Bradley, Tobias Mayer, Lambert, Lalande, and William Herschel, see Arago in the 'Annuaire', 1842, p. 388-399' Argelander, in Schum., 'Astron. Nachr ., No. 363, 364, 398, and in the treatise 'Von der eigenen Bewegung des Sonnensystems' (On the proper Motion of the Solar System), 1837, s. 43, respecting Perseus as the central body of the whole stellar stratum, likewise Otho Struve, in the 'Bull. de l'Acad. de St. Pétersb.', 1842, t. x., No. 9, p. 137-139. The last-named astronomer has found, by a mo4re recent combination, 261ºdegrees 23' R.A.+37ºdegrees 36' Decl. for the direction of the Sun's motion; and, taking the mean of his own results with that of Argelander, we have, by a combination of 797 stars, the formula 259ºdegrees 9' R.A.+34ºdegrees 36' Decl.

If we consider the proper, and not the perspective motions of the stars, we shall find many that appear to be distributed in groups, having an opposite direction; and facts hitherto observed do not, at any rate, render it a necessary assumption that all parts of our starry stratum, or the whole of the stellar islands filling space, should move round one large unknown luminous or non-luminous central body. The tendency of the human mind to investigate ultimate and highest causes certainly inclines the intellectual activity, no less than the imagination of mankind, to adopt such an hypothesis. Even the Stagirite proclaimed that "every thing which is moved must be referable to a motor, and that there would be no end to p 147 the concatenation of causes if there were not one primordial immovable morot."*

[footnote] *Aristot., 'de Cælo', iii., 2, p. 301, Bekker: 'Phys.', viii., t, p. 256.

This material taken from pages 147-203

COSMOS: A Sketch of the Physical Description of the Universe, Vol. 1 by Alexander von Humboldt