The results obtained by the employment of an instrument of this kind have led celebrated physicists, according to the difference of the hypothesis from which they started, to adopt p 171 entirely opposite views regarding the nature of the interior of the globe. It has been computed at what depths liquid or even gaseous substances would, from the pressure of their own superimposed strata, attain a density exceeding that of platinum or even iridium; and in order that the compression which has been detrmined within such narrow limits might be brought into harmony with the assumption of simple and infinitely compressible matter, Leslie has ingeniously conceived the nucleus of the world to be a hollow sphere, filled with an assumed "imponderable matter, having an enormous force of expansion." These venturesome and arbitrary conjectures have given rise, in wholly unscientific circles, to still more fantastic notions. The hollow sphere has by degrees been peopled with plants and animals, and two small subterranean revolving planets — Pluto and Proserpine — were imaginatively supposed to shed over it their mild light; as, however, it was further imagined that an ever-uniform temperature reigned in these internal regions, the air, which was made self-luminous by compression, might well render the planets of this lower world unnecessary. Near the north pole, at 80 degrees latitude, whence the polar light emanates, was an enormous opening, through which a descent might be made into the hollow sphere, and Sir Humphrey Davy and myself were even publicly and frequently invited by Captain Symmes to enter upon this subterranean expedition: so powerful is the morbid inclination of men to fill unknown spaces with shapes of wonder, totally unmindful of the counter evidence furnished by well-attested facts and universally acknowledged natural laws. Even the celebrated Halley, at the end of the seventeenth century, hollowed out the Earth in his magnetic speculations. Men were invited to believe that a subterranean freely-rotating nucleus occasions by its position the diurnal and annual changes of magnetic declination. It has thus been attempted in our own day, with tedious solemnity, to clothe in a scientific garb the quaintly-devised fiction of the humorous Holbert.*

[footnote] *[The work referred to, one of the wittiest productions of the learned Norwegian satirist and dramatist Holberg, was written in Latin, and first appeared under the following title: 'Nicolai Klimii iter subterraneum novam telluris theoriam ac historiam quintae monarchi Nicolai Klimii iter subterraneum novam telluris theoriam ac historiam quintae monarchi ad huc nobis incognitae exhibens e bibliotheca b. Abelini. Hafniae et Lipsiae sunt. Jac. Preuss', 1741. An admirable Danish translation of this learned but severe satire on the institutions, morals, and manners of the inhabitants of the upper Earth, appeared at Copenhagen in 1789, and was entitled 'Niels Klim's underjordiske reise ocd Ludwig Holberg, oversal after den Latinske original of Jens Baggesen'. Holberg, who studied for a time at Oxford, was born at Bergen in 1685, and died in 1754 as Rector of the University of Copenhagen.] — Tr.

p 172 The figure of the Earth and the amount of solidification (density) which it has acquired are intimately connected with the forces by which it is animated, in so far, at least, as they have been excited or awakened from without, through its planetry position with reference to a luminous central body. Compression, when considered as a consequence of centrifugal force acting on a rotating mass, explains the earlier condition of fluidity of our planet. During the solidification of this fluid, which is commonly conjectured to have been gaseous and primordially heated to a very high temperature, an enormous quantity of latent heat must have been liberated. If the process of solidification began as Fourier conjectures, by radiation from the cooling surface exposed to the atmosphere, the particles near the center would have continued fluid and hot. As, after long emanation of heat from the center toward the exterior, a stable condition of the temperature of the Earth would at length be established, it has been assumed that with increasing depth the subterranean heat likewise uninterruptedly increases. The heat of the water which flows from deep borings (Artesian wells), direct experiments regarding the temperature of rocks in mines, but, above all, the volcanic activity of the Earth, shown by the flow of molten masses from open fissures, afford unquestionable evidence of this increase for very considerable depths from the upper strata. According to conclusions based certainly upon mere analogies, this increase is probably much greater toward the center.

That which has been learned by an ingenious analytic calculation, expressly perfected for this class of investigations,* p 173 regarding the motion of heat in homogeneous metallic spheroids, must be applied with much caution to the actual character of our planet, considering our present imperfect knowledge of the substances of which the Earth is composed, the difference in the capacity of heat and in the conducting power of different superimposed masses, and the chemical changes experienced by solid and liquid masses from any enormous compression.

[footnote] *Here we must notice the admirable analytical labors of Fourier, Biot, Laplace, Poisson, Duhamel, and Lame. In his 'Theorie Mathematique de la Chaleur', 1835, p. 3, 428-430, 436, and 521-524 (see, also, De la Rive's abstract in the 'Bibliotheque Universelle de Geneve', Poisson has developed an hypothesis totally different from Fourier's view ('Theorie Analytique de la Chaleur'.) He denies the present fluid state of the Earth's center; he believes that "in cooling by radiation to the medium surrounding the Earth, the parts which were first solidified sunk, and that by a double descending and ascending current, the great inequality was lessened which would have taken place in a solid body cooling from the surface." It seems more probable to this great geometer that the solidification began in the parts lying nearest to the center: "the phenomenon of the increase of heat with the depth does not extend to the whole mass of the Earth, and is merely a consequence of the motion of our planetary system in space, of which some parts are of a very different temperature from others, in consequence of stellar heat (chaleur stellaire)." Thus, according to Poisson, the warmth of the water of our Artesian wells is merely that which has penetrated into the Earth from without; and the Earth itself "might be regarded as in the same circumstances as a mass of rock conveyed from the equator to the pole in so short a time as not to have entirely cooled. The increase of temperature in such a block would not extend to the central strata." The physical doubts which have reasonably been entertained against this extraordinary cosmical view (which attributes to the regions of space that which probably is more dependent on the first transition of matter condensing from the gaseo-fluid into the solid state) will be found collected in Poggendorf's 'Annalen', bd. xxxix., s 93-100.

It is with the greatest difficulty that our powers of comprehension can conceive the boundary line which divides the fluid mass of the interior from the hardened mineral masses of the external surface, or the gradual increase of the solid strata, and the condition of semi-fluidity of the earthy substances, these being conditions to which known laws of hydraulics can only apply under considerable modifications. The Sun and Moon, which cause the sea to ebb and flow, most probably also affect these subterranean depths. We may suppose that the periodic elevations and depressions of the molten mass under the already solidified strata must have caused inequalities in the vaulted surface from the force of pressure. The amount and action of such oscillations must, however, be small; and if the relative position of the attracting cosmical bodies may here also excite "spring tides," it is certainly not to these, but to more powerful internal forces, that we must ascribe the movements that shake the Earth's surface. There are groups of phenomena to whose existence it is necessary to draw attention, in order to indicate the universality of the influence of the attraction of the Sun and Moon on the external and internal conditions of the Earth, however little we may be able to determine the quantity of this influence.

According to tolerably accordant experiments in Artesian wells, it has been shown that the heat increases on an average about 1 degree for every 54.5 feet. If this increase can be reduced p 174 to arithmetical relations, it will follow, as I have already observed,* that a stratum of granite would be in a state of fusion at a depth of nearly twenty-one geographical miles, or between four and five times the elevation of the highest summit of the Hinalaya.

[footnote] *See the Introduction. This increase of temperature has been found in the Puits de Grenelle, at Paris, at 58.3 feet; in the boring at the new salt-works at Minden, almost 53.6; at Pregny, near Geneva, according to Auguste de la Rive and Marcet, notwithstanding that the mouth of the boring is 1609 feet above the level of the sea, it is also 53.6 feet. This coincidence between the results of a method first proposed by Arago in the year 1821 ('Annuaire du Bureau des Longitudes', 1835, p. 234), for three different mines, of the absolute depths of 1794, 2231, and 725 feet respectively, is remarkable. The two points on the Earth, lying at a small vertical distance from each other, whose annual mean temperatures are most accurately known, are probably at the spot on which the Paris Observatory stands, and the Caves de l'Observatoire beneath it; the mean temperature of the former is 51.5ºdegrees, and of the latter 53.3ºdegrees, the difference being 1.8ºdegrees for 92 feet, or 1 degree for 51.77 feet. (Poisson, 'Theorie Math. de la Chaleur', p. 415 and 462.) In the course of the last seventeen years, from causes not yet perfectly understood, but probably not connected with the actual temperature of the caves, the thermometer standing there has risen very nearly 0.4 degrees. Although in Artesian wells there are sometimes slight errors from the lateral permeation of water, these errors are less injurious to the accuracy of conclusions than those resulting from currents of cold air, which are almost always present in mines. The general result of Reich's great work on the temperature of the mines in the Saxony mining districts gives a somewhat slower increase of the terrestrial heat, or 1 degree to 76.3 feet. (Reich, 'Beob. uber die Temperatur des Gesteins in verschielen en Tiefen', 1834, s. 134.) Phillips, however, found (Pogg., 'Annalen', bd. xxxiv., s. 191), in a shaft of the coal-mine of Monk-wearmouth, near Newcastle, in which, as I have already remarked, excavations are going on at a depth of about 1500 feet below the level of the sea, an increase of 1 degree to 59.06 feet, a result almost identical with that found by Arago in the Puits de Grenell.

We must distinguish in our globe three different modes for the transmission of heat. The first is periodic, and affects the temperature of the terrestrial strata according as the heat penetrates from above downward or from below upward, being influenced by the different positions of the Sun and the seasons of the year. The second is likewise an effect of the Sun, although extremely slow: a portion of the heat that has penetrated into the equatorial regions moves in the interior of the globe toward the poles, where it escapes into the atmosphere and the remoter regions of space. The third mode of transmission is the slowest of all, and is derived from the secular cooling of the globe, and from the small portion of the primitive heat which is still being disengaged from the surface. p 175 This loss experienced by the central heat must have been very considerable in the earliest epochs of the Earth's revolutions, but within historical periods it has hardly been appreciable by our instruments. The surface of the Earth is therefore situated between the glowing heat of the inferior strata and the universal regions of space, whose temperature is probably below the freezing-point of mercury.

The periodic changes of temperature which have been occasioned on the Earth's surface by the Sun's position and by meteorological processes, are continued in its interior, although to a very inconsiderable depth. The slow conducting power of the ground diminishes this loss of heat in the winter, and is very favorable to deep-rooted trees. Points that lie at very different depths on the same vertical line attain the maximum and minimum of the imparted temperature at very different periods of time. The further they are removed from the surface, the smaller is this difference between the extremes. In the latitudes of our temperate zone (between 48 degrees and 52 degrees), the stratum of invariable temperature is at a depth of from 59 to 64 feet, and at half that depth the oscillations of the thermometer, from the influence of the seasons, scarcely amount to half a degree. In tropical climates this invariable stratum is only one foot below the surface, and this fact has been ingeniously made use of by Boussingault to obtain a convenient, and as he believes, certain determination of the mean temperature of the air of different places.*