'Melaphyre', augitic, uralitic, and oligoklastic porphyries. To the last-named species belongs the genuine 'verd-antique', so celebrated in the arts.

'Basalt', containing olivine and constituents which gelatinize in acids; phonolithe (porphyritic slate), trachyte, and colerite; the first of these rocks is only paartially, and the second always, divided into thin laminae, which give them an appearance of stratification when extended over a large space. Mesotype and nepheline constitute, according to Girard, an important part in the composition and internal texture of basalt. The nepheline contained in basalt reminds the geognosist both of the miascite of the Ilmen Mountains in the Ural,* which has been confounded with granite, and sometimes contains zirconium, and of the pyroxenic nepheline discovered by Gumprecht near Lobau and Chemnitz.

[footnote] *G. Rose, 'Reise nach dem Ural', bd. ii., s. 47-52. Respecting the identity of eleolite and uepheline (the latter containing rather the more lime), see Scheerer, in Poggend., 'Annalen', bd. xlix., s. 359-381.

To the second or sedimentary rocks belong the greater part of the formations which have been comprised under the old p 254 systematic, but not very correct designation of 'transition, flot' or 'secondary', and 'tertiary formations'. If the erupted rocks had not exercised an elevating, and, owing to the simultaneous shock of the earth, a disturbing influence on these sedimentary formations, the surface of our planet would have consisted of strata arranged in a uniformly horizontal direction above one another. Deprived of mountain chains, on whose declivities the gradations of vegetable forms and the scale of the diminishing heat of the atmosphere appear to be picturesquely reflected — furrowed ony here and there by valleys of erosion, formed by the force of fresh water moving on in gentle undulations, or by the accumulation of detritus, resulting from the action of currents of water — continents would have presented no other appearance from pole to pole than the dreary uniformity of the llanos of South America or the steppes of Northern Asia. The vault of heaven would everywhere have appeared to rest on vast plains, and the stars to rise as if they emerged from the depths of ocean. Such a condition of things could not, however, have generally prevailed for any length of time in the earlier periods of the world, since subterranean forces must have striven in all epochs to exert a counteracting influence.

Sedimentary strta have been either precipitated or deposited from liquids, according as the materials entering into their composition are supposed, whether as limestone or argillaceous slate, to be either chemically dissolved or suspended and commingled. But earth, when dissolved in fluids impregnated with carbonic acid, must be regarded as undergoing a mechanical process while they are being precipitated, deposited, and accumulated into strata. This view is of some importance with respect to the envelopment of organic bodies in petrifying calcareous beds. The most ancient sediments of the transition and secondary formations have probably been formed from water at a more or less high temperature, and at a time when the heat of the upper surface of the earth was still very considerable. Considered in this point of view, a Plutonic action seems to a certain extent also to have taken place in the sedimentary strata, especially the more ancient; but these strata appear to have been hardened into a schistose structure, and under great pressure, and not to have been solidified by cooling, like the rocks that have issued from the interior, as, for instance, granite, porphyry, and basalt. By degrees, as the waters lost their temperature, and were able to absorb a copious supply of the carbonic acid gas with which p 255 the atmosphere was overcharged, they became fitted to hold in solution a larger quantity of lime.

'The sedimentary strata', setting aside all other exogenous, purely mechanical deposits of sand or detritus, are as follows:

'Schist', of the lower and upper transition rock, compositing the silurian and devonian formations; from the lower silurian strata, which were once termed cambrian, to the upper strata of the old red sandstone or devonian formation, immediately in contact with the mountain limestone.

'Carboniferous deposits':

'Limestones' imbedded in the transition and carboniferous formations; zechstein, muschelkalk, Jura formation and chalk, also that portion of the tertiary formation which is not included in sandstone and conflomerate.

'Travertine', fresh-water limestone, and silicious concretions of hot springs, formations which have not been produced under the pressure of a large body of sea water, but almost in immediate contact with the atmosphere, as in shallow marshes and streams.