[footnote] *Coste, 'Versuche am Creusot uber das bruchig werden des Stabeisens.' Elie de Beaumont, 'Mem. Geol.', t. ii., p. 411.
Heat may even simultaneously induce opposite actions in crystalline bodies; for the admirable experiments of Mitscherlich have established the fact* that calcareous spar, without altering its condition of aggregation, expands in the direction of one of its axes and contracts in the other.
[footnote] * Mitscherlich, 'Ueber die Ausdehnung der Krystallisirten Korper durch die Warmelehre', in Poggend., 'Annalen', bd. x., s. 151.
If we pass from these general considerations to individual examples, we find that schist is converted, by the vicinity of Plutonic erupted rocks, into a bluish-black, glistening roofing slate. Here the planes of stratification are intersected by another system of divisional stratification, almost at right angles with the former,* and thus indicating an action subsequent to the alteration.
[footnote] * On the double system of divisional planes, see Elie de Beaumont, 'Geologie de la France', p. 41; Credner, 'Geognosie Thuringens und des Harzes', s. 40; and Romer, 'Das Rheinische Uebergangsgebirge', 1844. s. 5 und 9.
The penetration of silica causes the argillaceous schist to be traversed by quartz, transforming it, in part, into whetstone and silicious schist; the latter sometimes containing carbon, and being then capable of producing galvanic effects on the nerves. The highest degree of silicifaction of schist is that observed in ribbon jasper, a material highly valuable in the arts,* and which is produced in the Oural Mountains p 260 by the contact and eruption of augitic porphyry (at Orsk), of dioritic porphyry (at Aufschkul), or of a mass of hypersthenic rock conglomerated into spherical masses (at Bogoslowsk). At Monte Serrato, in the island of Elba, according to Frederic Hoffman, and in Tuscany, according to Alexander Brongniart, it is formed by contact with euphotide and serpentine.
[footnote] *The silica is not merely colored by peroxyd of iron, but is accompanied by clay, lime, and potash. Rose, 'Reise', bd. ii., s. 187. On the formation of jasper by the action of dioritic porphyry, augite, and by persthene rock, see Rose, bd. ii., s. 169, 187, und 192. See, also, bd. i., s. 427, where there is a drawing of the porphyry spheres between which jasper occurs, in the calcareous graywacke of Bogoslowsk, being produced by the Plutonic influence of the augitic rock; bd. ii., s. 545; and likewise Humboldt, 'Asie Centrale', t. i., p. 486.
The contact and Plutonic action of granite have sometimes made argillaceous schist granular, as was observed by Gustav Rose and myself in the Altai Mountains (within the fortress of Buchtarminsk),* and have transformed it into a mass resembling granite, consisting of a mixture of feldspar and mica, in which larger laminae of the latter were again imbedded.**
[footnote] *Rose, 'Reise nach dem Ural', bd. i., s. 586-588.
[footnote] **In respect to the volcanic origin of mica, it is important to notice that crystals of mica are found in the basalt of the Bohemian Mittelgebirge, in the lava that in 1822 was ejected from Vesuvius (Monticelli, 'Storia del Vesuvio negli Anni 1821 e 1822', 99), and in fragments of agrillaceous alte imbedded in scoriaceous basalt at Hohenfels, not far from Gerolstein, in the Eifel (see Mitscherlich, in Leonhard, 'Basalt-Gebilde', s. 244). On the formation of feldspar in argillaceous schist, through contact with porphyry, occurring between Urval and Poïet (Forez), see Dufrenoy, in 'Geol. de la France', t. i., p. 137. It is probably to a similar contact that certain schists near Paimpol, in Brittany, with whose appearance I was much struck, while making a geological pedestrian tour through that interesting country with Professor Kunth, owe their amygdaloid and cellular character, t. i., p. 234.