TREATMENT OF WOOD.

Chemical Processes.—Watt and Burgess's Process.—Sinclair's Process.—Keegan's Process.—American Wood Pulp System.—Aussedat's Process.—Acid Treatment of Wood.—Pictet and Brélaz's Process.—Barre and Blondel's Process.—Poncharac's Process.—Young and Pettigrew's Process.—Fridet and Matussière's Process.

The advantages of wood fibre as a paper material have been fully recognised in the United States and in many Continental countries, but more especially in Norway, Sweden, and Germany, from whence large quantities of wood pulp are imported into this country. There is no doubt that our home manufacturers have recently paid much attention to this material, and it is highly probable that wood, as an inexhaustible source of useful fibre, will at no distant date hold a foremost rank. Indeed, the very numerous processes which have been patented since the Watt process was first made known, indicate that from this unlimited source of fibre the requirements of the paper-maker may be to a large extent satisfied, provided, of course, that the processes for reducing the various suitable woods to the condition of pulp can be economically and satisfactorily effected. The great attention which this material has received at the hands of the experimentalist and chemist—the terms not being always synonymous—shows that the field is considered an important one, as indeed it is, and if successfully explored will, it is to be hoped, yield commensurate advantages both to inventors and the trade.

The object of the numerous inventors who have devised processes for the disintegration of wood fibre—that is, the separation of cellulose from the intercellular matters in which the fibres are enveloped—has necessarily been to dissolve out the latter without injury to the cellulose itself, but it may be said that as yet the object has not been fully attained by either of the processes which have been introduced. To remove the cellular matter from the true fibre or cellulose, without degrading or sacrificing a portion of the latter, is by no means easy of accomplishment when practised on an extensive scale, and many processes which present apparent advantages in one direction are often found to exhibit contrary results in another. The field, however, is still an open one, and human ingenuity may yet discover methods of separating wood fibre from its surrounding tissues in a still more perfect manner than hitherto.

The various processes for treating wood for the extraction of its fibre have been classified into: (1) chemical processes; and (2) mechanical processes. We will give precedence to the former in describing the various wood pulp processes, since the pulp produced by the latter, although extensively used, is chiefly employed, in combination with other pulps, for common kinds of paper. In reference to this part of our subject Davis says:—"Experience has dictated certain improvements in some of the details of those earlier methods, by which so-called 'chemical wood pulp' is manufactured very largely on the Continent of Europe.... It is possible to obtain a pulp of good quality, suitable for some classes of paper, by boiling the chipped wood in caustic soda, but when it is desired to use the pulp so prepared for papers having a perfectly white colour it has been demonstrated in practice that the action of the caustic soda solution at the high temperature which is required develops results to a certain degree in weakening and browning the fibres, and during the past five years much labour has been expended in the endeavour to overcome the objections named. The outcome of these efforts has been a number of patents, having for their object to prevent oxidation and subsequent weakening of the fibres." In several of these patents, to which we shall refer hereafter, bisulphite of lime is employed as the agent to prevent oxidation and consequent degradation of the fibres, and in other processes bisulphite of magnesia has been used for the same purpose. Davis further remarks: "Although a common principle runs through all these methods of preparing cellulose from wood, they differ in detail, as in the construction of the digesters employed, methods of treating the wood stock before boiling it in the sulphurous acid solution, and also as regards pressure, blowing off the sulphurous acid gas, etc., but all these processes present a striking similarity to the method patented by Tilghmann in 1867." There can be no doubt that the action of caustic soda, under high pressures, is highly injurious both to the colour and strength of the fibres, and any process that will check this destructive action in a thoroughly practical way will effect an important desideratum.

I. Chemical Processes: Watt and Burgess's Process.—This process, which, with some modifications, is extensively worked in America, consists in boiling wood shavings, or other similar vegetable matter, in caustic soda ley, and then washing to remove the alkali; the wood is next treated with chlorine gas, or an oxygeneous compound of chlorine, in a suitable vessel, and it is afterwards washed to free it from the hydrochloric acid formed. It is now treated with a small quantity of caustic soda in solution, which instantly converts it into pulp, which only requires to be washed and bleached, and beaten for an hour and a half in the beating engine, when the pulp is ready for the machine. The wood-paper process as carried out in America has been described by Hofmann, from whose work[15] we have abridged the following:—

The wood, mostly poplar, is brought to the works in 5-feet lengths. The bark having been stripped off by hand, it is cut into ½-inch slices by a cutter which consists of four steel knives, from 8 to 10 inches wide by 12 to 15 inches long, which are fastened in a slightly inclined position to a solid cast-iron disc of about 5 to 7 feet diameter, which revolves at a high speed, chopping the wood—which is fed to the blades through a trough—into thin slices across the grain. The trough must be large enough to receive the logs, usually 10 or 12 inches thick, and it is set at such an angle that the logs may slide down towards the revolving cutters; this slanting position only assists the movement of the logs, while a piston, which is propelled by a rack, pushes them steadily forward until they are entirely cut up. The piston, or pusher, then returns to its original position, fresh wood is put into the trough, and the operation repeated. In this way many tons of wood can be chopped up by one of these cutters in a day. The sliced wood is conveyed by trucks to an elevator by which it is hoisted up two storeys to a floor from which the boilers are filled. The boilers are upright cylinders, about 5 feet in diameter and 16 feet high, with semi-spherical ends, provided inside with straight perforated diaphragms, between which the chips from one cord of wood are confined. A solution of caustic soda, at 12° B., is introduced with the chips, and fires are started in a furnace underneath. At other works the boilers are heated by steam circulating through a jacket which covers the bottom and sides of the boiler.

The boiling is continued for about six hours, when the digestion is complete, and the contents of the boilers are emptied with violence, under the pressure of at least 65 lbs. of steam, which had been maintained inside. A large slide valve is attached to the side of each boiler for this purpose close to the perforated diaphragm, and connected by a capacious pipe with a sheet-iron cylinder of about 12 feet diameter and 10 feet high, which receives the contents—pulp, liquor, and steam. The object of these large chambers—one of which serves for two boilers—is to break the force of the discharging mass. The steam passes through a pipe on the top of each, and from thence through a water reservoir, while the liquid containing the pulp flows through a side opening and short pipe into movable boxes, or drainers, mounted on wheels, and each capable of holding the contents of one boiler; these boxes are pushed along a tramway up to the collecting chambers, where the pulp is received. In a building 132 feet long and 75 feet wide, ten digesting boilers are arranged in one straight line, and parallel with the boilers runs the main line of rails, side tracks extending from it to each of the chambers, and a turn-table is supplied at every junction. By this arrangement the drainer waggons can be pushed from the side tracks on to the main line, which leads to the washing-engines in an adjoining room. A system of drainage is established below the tramways, by which all the liquid which drains from the waggons is carried away and collected for treatment by evaporation; these carriers remain on the side tracks until the pulp is ready for the washing-engine.

When the greater portion of the liquor has drained off, warm water is sprinkled over the pulp from a hose for the purpose of extracting all the liquid which is sufficiently concentrated to repay the cost of evaporation—the most advantageous method of recovering the soda. The contents of the waggons—from the same number of boilers—are then placed in two washing-engines, each capable of holding 1,000 lbs. of pulp. After being sufficiently worked in these engines the pulp is transferred to two stuff-chests, and from thence conveyed by pumps to two wet-machines. The screens (strainers) of the wet-machines retain all impurities derived from knots, bark, and other sources, and the pulp, or half-stuff, obtained is perfectly clean and of a light grey colour. The pulp is bleached with solution of bleaching powder like rags, then emptied into drainers and allowed to remain therein with the liquid for twenty-four to forty-eight hours, or long enough to render the use of vitriol in the bleaching unnecessary. The portion of the white pulp which is to be worked up into paper in the adjoining mill is taken from the drainers into boxes running on tramways in the moist state, but all the pulp which has to be shipped to a distance is made into rolls on a large cylinder paper-machine with many dryers. The object being merely to dry the pulp, a very heavy web can be obtained, since the water leaves this pulp very freely. The wood pulp thus obtained is perfectly clean, of a soft, white spongy fibre, and a greater portion of it is mixed with a small proportion of rag pulp and worked into book and fine printing papers. Sometimes the wood pulp is used alone or mixed with white paper shavings for book paper. The fibres are rather deficient in strength, but as a material for blotting paper they are said to be unsurpassed, while the wood paper is much liked by printers.

The wood from poplar, which is generally preferred, furnishes a very white fibre, and is easily digested, but since the fibres are short it is sometimes found advantageous to mix them with longer fibres, as those of the spruce or pine, although the latter wood requires a much more severe treatment in boiling with alkali than the former. In reference to this process the following remarks appeared in The Chemist,[16] 1855:—"The process occupies only a few hours; in fact, a piece of wood may be converted into paper and printed upon within twenty-four hours." An interesting verification of this was published a few years since in an American paper, the Southern Trade Gazette, of Kentucky, which runs as follows:—"At a wood-pulp mill at Augusta, Ga., a tree was cut down in the forest at six o'clock A.M., was made into pulp, and then into paper, at six o'clock in the evening, and distributed amongst the people as a newspaper by six o'clock the next morning. From a tree to a newspaper, being read by thousands, in the brief round of twenty-four hours!" The wood-paper process referred to has given rise to many subsequent modifications, some of which we will briefly describe.