The bursa that is sometimes met with on the under aspect of the calcaneus—the subcalcanean bursa—when inflamed, gives rise to pain and tenderness in the sole of the foot. This affection may be associated with a spinous projection from the bone, which is capable of being recognised in a skiagram. The soft parts of the heel are turned forwards as a flap, the bursa is dissected out, and the projection of bone, if present, is removed.
The enlargement of adventitious bursæ over the head of the first metatarsal in hallux valgus; over the tarsus, metatarsus, and digits in the different forms of club-foot; over the angular projection in Pott's disease of the spine; over the end of the bone in amputation stumps, and over hard tumours such as chondroma and osteoma, are described elsewhere.
CHAPTER XX
DISEASES OF BONE
- [Anatomy and physiology]
- —[Regeneration of bone]
- —[Transplantation of bone].
- [Diseases of Bone]
- —[Definition of terms]
- —[Pyogenic diseases]:
- [Acute osteomyelitis and periostitis];
- [Chronic and relapsing osteomyelitis];
- [Abscess of bone]
- —[Tuberculous disease]
- —[Syphilitic disease]
- —[Hydatids];
- [Rickets];
- [Osteomalacia]
- —[Ostitis deformans of Paget]
- —[Osteomyelitis fibrosa]
- —[Affections of bones in diseases of the nervous system]
- —[Fragilitas ossium]
- —[Tumours and cysts of bone].
Surgical Anatomy.—During the period of growth, a long bone such as the tibia consists of a shaft or diaphysis, and two extremities or epiphyses. So long as growth continues there intervenes between the shaft and each of the epiphyses a disc of actively growing cartilage—the epiphysial cartilage; and at the junction of this cartilage with the shaft is a zone of young, vascular, spongy bone known as the metaphysis or epiphysial junction. The shaft is a cylinder of compact bone enclosing the medullary canal, which is filled with yellow marrow. The extremities, which include the ossifying junctions, consist of spongy bone, the spaces of which are filled with red marrow. The articular aspect of the epiphysis is invested with a thick layer of hyaline cartilage, known as the articular cartilage, which would appear to be mainly nourished from the synovia.
The external investment—the periosteum—is thick and vascular during the period of growth, but becomes thin and less vascular when the skeleton has attained maturity. Except where muscles are attached it is easily separated from the bone; at the extremities it is intimately connected with the epiphysial cartilage and with the epiphysis, and at the margin of the latter it becomes continuous with the capsule of the adjacent joint. It consists of two layers, an outer fibrous and an inner cellular layer; the cells, which are called osteoblasts, are continuous with those lining the Haversian canals and the medullary cavity.
The arrangement of the blood vessels determines to some extent the incidence of disease in bone. The nutrient artery, after entering the medullary canal through a special foramen in the cortex, bifurcates, and one main division runs towards each of the extremities, and terminates at the ossifying junction in a series of capillary loops projected against the epiphysial cartilage. This arrangement favours the lodgment of any organisms that may be circulating in the blood, and partly accounts for the frequency with which diseases of bacterial origin develop in the region of the ossifying junction. The diaphysis is also nourished by numerous blood vessels from the periosteum, which penetrate the cortex through the Haversian canals and anastomose with those derived from the nutrient artery. The epiphyses are nourished by a separate system of blood vessels, derived from the arteries which supply the adjacent joint. The veins of the marrow are of large calibre and are devoid of valves.
The nerves enter the marrow along with the arteries, and, being derived from the sympathetic system, are probably chiefly concerned with the innervation of the blood vessels, but they are also capable of transmitting sensory impulses, as pain is a prominent feature of many bone affections.
It has long been believed that the function of the periosteum is to form new bone, but this view has been questioned by Sir William Macewen, who maintains that its chief function is to limit the formation of new bone. His experimental observations appear to show that new bone is exclusively formed by the cellular elements or osteoblasts: these are found on the surface of the bone, lining the Haversian canals and in the marrow. We believe that it will avoid confusion in the study of the diseases of bone if the osteoblasts on the surface of the bone are still regarded as forming the deeper layer of the periosteum.
The formation of new bone by the osteoblasts may be defective as a result of physiological conditions, such as old age and disease of a part, and defective formation is often associated with atrophy, or more strictly speaking, absorption, of the existing bone, as is well seen in the edentulous jaw and in the neck of the femur of a person advanced in years. Defective formation associated with atrophy is also illustrated in the bones of the lower limbs of persons who are unable to stand or walk, and in the distal portion of a bone which is the seat of an ununited fracture. The same combination is seen in an exaggerated degree in the bones of limbs that are paralysed; in the case of adults, atrophy of bone predominates; in children and adolescents, defective formation is the more prominent feature, and the affected bones are attenuated, smooth on the surface, and abnormally light.