CHAPTER II
INJURIES OF JOINTS
- [Surgical Anatomy]
- —[Injuries]:
- [Contusions];
- [Wounds];
- [Sprains];
- [Dislocations]
- —[Traumatic Dislocations]:
- [Causes]:
- [Varieties];
- [Clinical features];
- [Treatment]
- —[Compound dislocations]
- —[Old-standing dislocations].
Surgical Anatomy.—The function of a joint is to permit of the movement of one bone upon another. The articular surfaces are covered with a thin layer of hyaline cartilage, and are retained in apposition by the tension of ligaments and of the muscles surrounding the joint. The articular capsule (capsular ligament) is directly continuous with the periosteum, and is lined by a synovial layer, which at the line of attachment of the capsule is reflected on to the bone as far as the articular cartilage. The synovial layer invests intra-articular ligaments, and is projected into the interior of the joint in the form of loose folds wherever the articulating surfaces are not in immediate contact. The surface of the synovial layer is covered with minute processes or villi, which in diseased conditions may become hypertrophied. The synovia owes its lubricating property to mucin, derived from the solution of the endothelial cells on the free surface of the synovial layer. The opposing surfaces of a joint being always in accurate contact, the so-called cavity is only a potential one. If fluid is poured out into the joint, the synovial layer and the capsule are put upon the stretch, causing discomfort or actual pain, which is partly relieved by slightly flexing the joint. If the distension persists, the ligaments become elongated and the joint unstable.
The common origin of bone, cartilage, periosteum, and synovial layer from one parent tissue of the embryo, accords with the readiness with which any one of these tissues may be converted into another under traumatic or pathological influences; and how in ligaments and in synovial membrane foci of hyaline cartilage may form and, after increasing in size, undergo ossification.
Joints derive an abundant blood supply through the articular arteries. The lymphatics, which take origin in the synovial layer, pass to efferent vessels which run in the intermuscular and other connective-tissue planes of the limb. The nerve supply is derived chiefly from the nerves distributed to the muscles acting on the joint and to the skin over it.
Sources of Joint Strength.—The capacity of a joint to resist dislocation depends upon (1) the shape of its osseous elements; (2) the strength and arrangement of its ligaments; (3) the support it receives from muscles or tendons placed in relation to it; and (4) the relative stability of adjacent structures. While all these factors contribute to the strength of a given joint, one or other of them usually predominates, so that certain joints are osseously strong, others are ligamentously strong, while a few depend chiefly upon adjacent muscles for their stability.
The hip and elbows are the best examples of joints deriving their strength mainly from the architectural arrangement of the constituent bones. These joints are dislocated only by extreme degrees of violence, and not infrequently—especially in the elbow—portions of the bones are fractured before the articular surfaces are separated.
The knee, the wrist, the carpal, the tarsal, and the clavicular joints depend for their stability almost entirely on the strength of their ligaments. These joints are rarely dislocated, but as the main incidence of the violence falls on the ligaments they are frequently sprained.
The shoulder is the typical example of a joint depending for its security chiefly upon the muscles and tendons passing over it, and hence the frequency with which it is dislocated when the muscles are taken unawares. At the same time the great mobility of the scapula and clavicle materially increases the stability of the shoulder-joint. The tendons passing in relation to the knee, ankle, and wrist add to the stability of these joints.
The proximity of an easily fractured bone also contributes to prevent dislocation of certain joints—for example, fracture of the clavicle prevents an impinging force expending itself on the shoulder-joint; and the frequency of Colles' fracture of the radius, and of Pott's fracture of the fibula, doubtless accounts to some extent for the rarity of dislocation of the wrist and ankle-joints respectively. The immunity from dislocation which the joints of young subjects enjoy is partly due to the ease with which an adjacent epiphysis is separated.