This method is exceedingly simple: Aqua regia (a mixture of two parts of hydrochloric and one part of nitric acids) is placed in a tubular retort provided with a receiver, and the organic materials, which have previously been cut into small pieces, added; the reaction commences immediately; if it is not sufficiently active, it is accelerated by a gentle heat: lively effervescence now occurs, and the destruction of all non-oleaginous substances is soon accomplished. The latter substances alone are not immediately decomposed by aqua regia, which attacks them only after prolonged action. As soon as the operation is concluded, the apparatus is removed from the fire and taken apart. The fluid condensed in the receiver is added to that remaining in the retort, and the whole thoroughly cooled in an open dish. The fatty matters now form a solid crust upon the surface of the fluid, which is removed and washed with distilled water, and, the washings being added to the rest of the solution, the latter is directly examined for metallic poisons. It is recommended by Gaultier de Claubry, in cases where the detection of arsenic is desired, to saturate and afterwards boil the suspected fluid with sulphuric acid, in order to remove the nitric and hydrochloric acids present.

DIALYSIS.

The application of the dialytic method was first proposed by Graham. By its use we are enabled to distinguish between two large classes of bodies, viz., colloids and crystalloids. Albumen, gelatine, and analogous substances are typical of colloid bodies; crystalloid substances, on the other hand, are those that are capable of crystallization, either directly or in their compounds, or, in case they are fluids, would possess this property when brought to the solid state. Graham discovered that when an aqueous solution containing a mixture of colloid and crystalloid substances is placed in a vessel having for its bottom a piece of parchment or animal membrane, and this is immersed in a larger vessel filled with water, all of the crystalloids contained in the first vessel transverse the porous membrane and are to be found in the larger vessel, the colloid bodies being retained above the membrane. The organic matter to be eliminated in toxicological researches being colloids, and the poisons usually employed being crystalloids, the value of dialysis as a method of separation is evident. The process is executed as follows:

Fig. 1.

Fig. 2.

A wooden,—or better, a gutta-percha—cylinder (Fig. 1), 5 cubic centimetres in height and from 20 to 25 c. c. in diameter, is employed. A piece of moistened parchment is securely attached to one of the openings of the cylinder, which, upon drying, shrinks and completely closes the aperture. If its continuity becomes impaired, the pores of the membrane should be covered with the white of an egg which is subsequently coagulated by the application of heat. The organs previously cut into small pieces, or the materials found in the alimentary canal, etc., after having been allowed to digest for 24 hours in water at 32°[A]—or, in dilute acids, if the presence of an alkaloid is suspected,—are then placed in the upper vessel, which is termed the dialyser. The whole should form a layer not over 2 cubic centimetres in height. The dialyser is next placed in the larger vessel filled with distilled water. In about 24 hours three-quarters of the crystalloid substances present will have passed into the lower vessel. The solution is then evaporated over a water-bath, and submitted to analysis. The portion remaining in the dialyser is decomposed by one of the methods previously described, in order to effect the detection of any poisonous substances possibly present. Instead of the above apparatus, the one represented in Fig. 2 can be employed. The fluid under examination is placed in a bell-shaped jar, open at the top and closed below with a piece of parchment, which is then suspended in the centre of a larger vessel containing water. In other respects the operation is performed in the same manner as with the apparatus represented in Fig. 1.

[II.
DETECTION OF POISONS, THE PRESENCE OF WHICH IS SUSPECTED.]

DETECTION OF ARSENIC.