is itself one of the antiprimes which satisfy the formative condition of covering

. In other words, an absolute antiprime is an abstractive class which covers every abstractive class which covers it.

If an abstractive class be an absolute antiprime, it is evident that the formative condition of 'covering it' is regular for antiprimes. Thus the set of events which are members of the absolute antiprimes which cover some one assigned absolute antiprime constitutes an abstractive element. Such an element will be called a 'moment.' Thus a moment is an abstractive element deduced from the condition of covering an absolute antiprime.

Only events of a certain type can be members of an absolute antiprime, namely events which in [Part II] have been called 'durations.' Only durations can extend over durations, and accordingly all the members of a moment are durations.

33.3 We may conceive of a duration as a sort of temporal thickness (or, slab) of nature[6]. In an absolute antiprime we have a series of temporal thicknesses successively packed one inside the other and converging towards the ideal of no thickness. An absolute antiprime indicates the ideal of an extensionless moment of time.

[6]The slab of nature forming a duration is limited in its temporal dimension and unlimited in its spatial dimensions. Thus it represents a finite time and infinite space.