[CHAPTER II]
THE FOUNDATIONS OF DYNAMICAL PHYSICS

[4. Newton's Laws of Motion]. 4.1 The theoretical difficulties in the way of the application of the philosophic doctrine of relativity have never worried practical scientists. They have started with the working assumptions that in some sense the world is in one euclidean space, that the permanent points in such a space have no individual characteristics recognisable by us, except so far as they are occupied by recognisable material or except in so far as they are defined by assigned spatial relations to points which are thus definitely recognisable, and that according to the purpose in hand either the earth can be assumed to be at rest or else astronomical axes which are defined by the aid of the solar system, of the stars, and of dynamical considerations deduced from Newton's laws of motion.

4.2 Newton's laws[3] of motion presuppose the notions of mass and force. Mass arises from the conception of a passive quality of a material body, what it is in itself apart from its relation to other bodies; the notion of 'force' is that of an active agency changing the physical circumstances of the body, and in particular its spatial relations to other bodies. It is fairly obvious that mass and force were introduced into science as the outcome of this antithesis between intrinsic quality and agency, although further reflection may somewhat mar the simplicity of this outlook. Mass and force are measurable quantities, and their numerical expressions are dependent on the units chosen. The mass of a body is constant, so long as the body remains composed of the same self-identical material. Velocity, acceleration and force are vector quantities, namely they have direction as well as magnitude. They are thus representable by straight lines drawn from any arbitrary origin.

4.3 These laws of motion are among the foundations of science; and certainly any alteration in them must be such as to produce effects observable only under very exceptional circumstances. But, as is so often the case in science, a scrutiny of their meaning produces many perplexities.

In the first place we can sweep aside one minor difficulty. In our experience, a finite mass of matter occupies a volume and not a point. Evidently therefore the laws should be stated in an integral form, involving at certain points of the exposition greater elaboration of statement. These forms are stated (with somewhat abbreviated explanation) in dynamical treatises.

Secondly, Lorentz's distinction between macroscopic equations and microscopic equations forces itself on us at once, by reason of the molecular nature of matter and the dynamical nature of heat. A body apparently formed of continuous matter with its intrinsic geometrical relations nearly invariable is in fact composed of agitated molecules. The equations of motion for such a body as used by an engineer or an astronomer are, in Lorentz's nomenclature, macroscopic. In such equations even a differential element of volume is to be supposed to be sufficiently large to average out the diverse agitations of the molecules, and to register only the general unbalanced residuum which to ordinary observation is the motion of the body.

The microscopic equations are those which apply to the individual molecules. It is at once evident that a series of such sets of equations is possible, in which the adjacent sets are macroscopic and microscopic relatively to each other. For example, we may penetrate below the molecule to the electrons and the core which compose it, and thus obtain infra-molecular equations. It is purely a question as to whether there are any observed phenomena which in this way receive their interpretation.

The inductive evidence for the validity of Newton's equations of motion, within the experimental limits of accuracy, is obviously much stronger in the case of the macroscopic equations of the engineer and the astronomer than it is in the case of the microscopic equations of the molecule, and very much stronger than in the case of the infra-microscopic equations of the electron. But there is good evidence that even the infra-microscopic equations conform to Newton's laws as a first approximation. The traces of deviation arise when the velocities are not entirely negligible compared to that of light.

4.4 What do we know about masses and about forces? We obtain our knowledge of forces by having some theory about masses, and our knowledge of masses by having some theory about forces. Our theories about masses enable us in certain circumstances to assign the numerical ratios of the masses of the bodies involved; then the observed motions of these bodies will enable us to register (by the use of Newton's laws of motion) the directions and magnitudes of the forces involved, and thence to frame more extended theories as to the laws regulating the production of force. Our theories about the direction and comparative magnitudes of forces and the observed motions of the bodies will enable us to register (by the use of Newton's laws of motion) the comparative magnitudes of masses. The final results are to be found in engineers' pocket-books in tables of physical constants for physicists, and in astronomical tables. The verification is the concordant results of diverse experiments. One essential part of such theories is the judgment of circumstances which are sufficiently analogous to warrant the assumption of the same mass or the same magnitude of force in assigned diverse cases. Namely the theories depend upon the fact of recognition.

4.5 It has been popular to define force as the product of mass and acceleration. The difficulty to be faced with this definition is that the familiar equation of elementary dynamics, namely,