53.2 In considering the scientific object it is the occupied event which corresponds to the situation of the physical object. The occupied event is the situation of the charge, in so far as the single scientific object is conceived as an (ideal) physical object.
53.3 There are evidently many different kinds of location which satisfy the general definition of location in an abstractive element, even when the kind of abstractive element is assigned. These differences mainly arise from differences in the relations of objects to parts of their situations. An object is an atomic entity and as such is related to its situations. But a situation is an event with parts of various kinds, and we have to consider the various kinds of relationships which objects may have to various kinds of parts of their situations.
For example, if the sense-object 'redness, of a definite shade' be located in an area, it will be located in any portion of that area; and this arises from the fact that if it be situated in an event, it is also situated in any portion of that event. But it is not true that if a chair be situated in an event, that the chair—as one atomic object—is situated in any part of the event though it is so situated in some parts. Again a tune cannot be situated in any event comprised in a duration too short for the successive notes to be sounded. Thus for a tune a minimum quantum of time is necessary.
[54. Uniform Objects]. 54.1 It will be convenient to classify objects according as they do or do not satisfy certain important conditions respecting their relations to their situations.
'Uniform' objects are objects with a certain smoothness in their temporal relations, so that they require no minimum quantum of time-lapse in the events which are their situations. These are objects which can be said to exist 'at a given moment.' For example, a tune is not an uniform object; but a chair, as ordinarily recognised, is such an object. The example of the chair, and the dissolution of its continuous materials with specific physical constants into assemblages of electrons, warn us that a problem remains over for discussion after we shall have defined the meaning to be assigned to 'uniformity.'
54.2 In order to explain more precisely the theory of uniform objects, it is convenient to make a few definitions:
A 'slice' of an event
in a time-system