This third process of criticism is that of verifying that our abstract postulates hold for the particular case in question. It is in respect to this process of verification for the particular case that all the trouble arises. In some simple instances, such as the counting of forty apples, we can with a little care arrive at practical certainty. But in general, with more complex instances, complete certainty is unattainable. Volumes, libraries of volumes, have been written on the subject. It is the battle ground of rival philosophers. There are two distinct questions involved. There are particular definite things observed, and we have to make sure that the relations between these things really do obey certain definite exact abstract conditions. There is great room for error here. The exact observational methods of science are all contrivances for limiting these erroneous conclusions as to direct matters of fact. But another question arises. The things directly observed are, almost always, only samples. We want to conclude that the abstract conditions, which hold for the samples, also hold for all other entities which, for some reason or other, appear to us to be of the same sort. This process of reasoning from the sample to the whole species is Induction. The theory of Induction is the despair of philosophy—and yet all our activities are based upon it. Anyhow, in criticising a mathematical conclusion as to a particular matter of fact, the real difficulties consist in finding out the abstract assumptions involved, and in estimating the evidence for their applicability to the particular case in hand.
It often happens, therefore, that in criticising a learned book of applied mathematics, or a memoir, one’s whole trouble is with the first chapter, or even with the first page. For it is there, at the very outset, where the author will probably be found to slip in his assumptions. Farther, the trouble is not with what the author does say, but with what he does not say. Also it is not with what he knows he has assumed, but with what he has unconsciously assumed. We do not doubt the author’s honesty. It is his perspicacity which we are criticising. Each generation criticises the unconscious assumptions made by its parents. It may assent to them, but it brings them out in the open.
The history of the development of language illustrates this point. It is a history of the progressive analysis of ideas. Latin and Greek were inflected languages. This means that they express an unanalyzed complex of ideas by the mere modification of a word; whereas in English, for example, we use prepositions and auxiliary verbs to drag into the open the whole bundle of ideas involved. For certain forms of literary art,—though not always—the compact absorption of auxiliary ideas into the main word may be an advantage. But in a language such as English there is the overwhelming gain in explicitness. This increased explicitness is a more complete exhibition of the various abstractions involved in the complex idea which is the meaning of the sentence.
By comparison with language, we can now see what is the function in thought which is performed by pure mathematics. It is a resolute attempt to go the whole way in the direction of complete analysis, so as to separate the elements of mere matter of fact from the purely abstract conditions which they exemplify.
The habit of such analysis enlightens every act of the functioning of the human mind. It first (by isolating it) emphasizes the direct aesthetic appreciation of the content of experience. This direct appreciation means an apprehension of what this experience is in itself in its own particular essence, including its immediate concrete values. This is a question of direct experience, dependent upon sensitive subtlety. There is then the abstraction of the particular entities involved, viewed in themselves, and as apart from that particular occasion of experience in which we are then apprehending them. Lastly there is the further apprehension of the absolutely general conditions satisfied by the particular relations of those entities as in that experience. These conditions gain their generality from the fact that they are expressible without reference to those particular relations or to those particular relata which occur in that particular occasion of experience. They are conditions which might hold for an indefinite variety of other occasions, involving other entities and other relations between them. Thus these conditions are perfectly general because they refer to no particular occasion, and to no particular entities (such as green, or blue, or trees) which enter into a variety of occasions, and to no particular relationships between such entities.
There is, however, a limitation to be made to the generality of mathematics; it is a qualification which applies equally to all general statements. No statement, except one, can be made respecting any remote occasion which enters into no relationship with the immediate occasion so as to form a constitutive element of the essence of that immediate occasion. By the ‘immediate occasion’ I mean that occasion which involves as an ingredient the individual act of judgment in question. The one excepted statement is,—If anything out of relationship, then complete ignorance as to it. Here by ‘ignorance,’ I mean ignorance; accordingly no advice can be given as to how to expect it, or to treat it, in ‘practice’ or in any other way. Either we know something of the remote occasion by the cognition which is itself an element of the immediate occasion, or we know nothing. Accordingly the full universe, disclosed for every variety of experience, is a universe in which every detail enters into its proper relationship with the immediate occasion. The generality of mathematics is the most complete generality consistent with the community of occasions which constitutes our metaphysical situation.
It is further to be noticed that the particular entities require these general conditions for their ingression into any occasions; but the same general conditions may be required by many types of particular entities. This fact, that the general conditions transcend any one set of particular entities, is the ground for the entry into mathematics, and into mathematical logic, of the notion of the ‘variable.’ It is by the employment of this notion that general conditions are investigated without any specification of particular entities. This irrelevance of the particular entities has not been generally understood: for example, the shape-iness of shapes, e.g., circularity and sphericity and cubicality as in actual experience, do not enter into the geometrical reasoning.
The exercise of logical reason is always concerned with these absolutely general conditions. In its broadest sense, the discovery of mathematics is the discovery that the totality of these general abstract conditions, which are concurrently applicable to the relationships among the entities of any one concrete occasion, are themselves inter-connected in the manner of a pattern with a key to it. This pattern of relationships among general abstract conditions is imposed alike on external reality, and on our abstract representations of it, by the general necessity that every thing must be just its own individual self, with its own individual way of differing from everything else. This is nothing else than the necessity of abstract logic, which is the presupposition involved in the very fact of interrelated existence as disclosed in each immediate occasion of experience.
The key to the pattern means this fact:—that from a select set of those general conditions, exemplified in any one and the same occasion, a pattern involving an infinite variety of other such conditions, also exemplified in the same occasion, can be developed by the pure exercise of abstract logic. Any such select set is called the set of postulates, or premises, from which the reasoning proceeds. The reasoning is nothing else than the exhibition of the whole pattern of general conditions involved in the pattern derived from the selected postulates.
The harmony of the logical reason, which divines the complete pattern as involved in the postulates, is the most general aesthetic property arising from the mere fact of concurrent existence in the unity of one occasion. Wherever there is a unity of occasion there is thereby established an aesthetic relationship between the general conditions involved in that occasion. This aesthetic relationship is that which is divined in the exercise of rationality. Whatever falls within that relationship is thereby exemplified in that occasion; whatever falls without that relationship is thereby excluded from exemplification in that occasion. The complete pattern of general conditions, thus exemplified, is determined by any one of many select sets of these conditions. These key sets are sets of equivalent postulates. This reasonable harmony of being, which is required for the unity of a complex occasion, together with the completeness of the realisation (in that occasion) of all that is involved in its logical harmony, is the primary article of metaphysical doctrine. It means that for things to be together involves that they are reasonably together. This means that thought can penetrate into every occasion of fact, so that by comprehending its key conditions, the whole complex of its pattern of conditions lies open before it. It comes to this:—provided we know something which is perfectly general about the elements in any occasion, we can then know an indefinite number of other equally general concepts which must also be exemplified in that same occasion. The logical harmony involved in the unity of an occasion is both exclusive and inclusive. The occasion must exclude the inharmonious, and it must include the harmonious.