The theory of relativity has justly excited a great amount of public attention. But, for all its importance, it has not been the topic which has chiefly absorbed the recent interest of physicists. Without question that position is held by the quantum theory. The point of interest in this theory is that, according to it, some effects which appear essentially capable of gradual increase or gradual diminution are in reality to be increased or decreased only by certain definite jumps. It is as though you could walk at three miles per hour or at four miles per hour, but not at three and a half miles per hour.

The effects in question are concerned with the radiation of light from a molecule which has been excited by some collision. Light consists of waves of vibration in the electromagnetic field. After a complete wave has passed a given point everything at that point is restored to its original state and is ready for the next wave which follows on. Picture to yourselves the waves on the ocean, and reckon from crest to crest of successive waves. The number of waves which pass a given point in one second is called the frequency of that system of waves. A system of light-waves of definite frequency corresponds to a definite colour in the spectrum. Now a molecule, when excited, vibrates with a certain number of definite frequencies. In other words, there are a definite set of modes of vibration of the molecule, and each mode of vibration has one definite frequency. Each mode of vibration can stir up in the electromagnetic field waves of its own frequency. These waves carry away the energy of the vibration; so that finally (when such waves are in being) the molecule loses the energy of its excitement and the waves cease. Thus a molecule can radiate light of certain definite colours, that is to say, of certain definite frequencies.

You would think that each mode of vibration could be excited to any intensity, so that the energy carried away by light of that frequency could be of any amount. But this is not the case. There appear to be certain minimum amounts of energy which cannot be subdivided. The case is analogous to that of a citizen of the United States who, in paying his debts in the currency of his country, cannot subdivide a cent so as to correspond to some minute subdivision of the goods obtained. The cent corresponds to the minimum quantity of the light energy, and the goods obtained correspond to the energy of the exciting cause. This exciting cause is either strong enough to procure the emission of one cent of energy, or fails to procure the emission of any energy whatsoever. In any case the molecule will only emit an integral number of cents of energy. There is a further peculiarity which we can illustrate by bringing an Englishman onto the scene. He pays his debts in English currency, and his smallest unit is a farthing which differs in value from the cent. The farthing is in fact about half a cent, to a very rough approximation. In the molecule, different modes of vibration have different frequencies. Compare each mode to a nation. One mode corresponds to the United States, and another mode corresponds to England. One mode can only radiate its energy in[in] an integral number of cents, so that a cent of energy is the least it can pay out; whereas the other mode can only radiate its energy in an integral number of farthings, so that a farthing of energy is the least that it can pay out. Also a rule can be found to tell us the relative value of the cent of energy of one mode to the farthing of energy of another mode. The rule is childishly simple: Each smallest coin of energy has a value in strict proportion to the frequency belonging to that mode. By this rule, and comparing farthings with cents, the frequency of an American would be about twice that of an Englishman. In other words, the American would do about twice as many things in a second as an Englishman. I must leave you to judge whether this corresponds to the reputed characters of the two nations. Also I suggest that there are merits attaching to both ends of the solar spectrum. Sometimes you want red light and sometimes violet light.

There has been, I hope, no great difficulty in comprehending what the quantum theory asserts about molecules. The perplexity arises from the effort to fit the theory into the current scientific picture of what is going on in the molecule or atom.

It has been the basis of the materialistic theory, that the happenings of nature are to be explained in terms of the locomotion of material. In accordance with this principle, the waves of light were explained in terms of the locomotion of a material ether, and the internal happenings of a molecule are now explained in terms of the locomotion of separate material parts. In respect to waves of light, the material ether has retreated to an indeterminate position in the background, and is rarely talked about. But the principle is unquestioned as regards its application to the atom. For example a neutral hydrogen atom is assumed to consist of at least two lumps of material; one lump is the nucleus consisting of a material called positive electricity, and the other is a single electron which is negative electricity. The nucleus shows signs of being complex, and of being subdivisible into smaller lumps, some of positive electricity and others electronic. The assumption is, that whatever vibration takes place in the atom is to be attributed to the vibratory locomotion of some bit of material, detachable from the remainder. The difficulty with the quantum theory is that, on this hypothesis, we have to picture the atom as providing a limited number of definite grooves, which are the sole tracks along which vibration can take place, whereas the classical scientific picture provides none of these grooves. The quantum theory wants trolley-cars with a limited number of routes, and the scientific picture provides horses galloping over prairies. The result is that the physical doctrine of the atom has got into a state which is strongly suggestive of the epicycles of astronomy before Copernicus.

On the organic theory of nature there are two sorts of vibrations which radically differ from each other. There is vibratory locomotion, and there is vibratory organic deformation; and the conditions for the two types of change are of a different character. In other words, there is vibratory locomotion of a given pattern as one whole, and there is vibratory change of pattern.

A complete organism in the organic theory is what corresponds to a bit of material on the materialistic theory. There will be a primary genus, comprising a number of species of organisms, such that each primary organism, belonging to a species of the primary genus, is not decomposable into subordinate organisms. I will call any organism of the primary genus a primate. There may be different species of primates.

It must be kept in mind that we are dealing with the abstractions of physics. Accordingly, we are not thinking of what a primate is in itself, as a pattern arising from the prehension of the concrete aspects; nor are we thinking of what a primate is for its environment, in respect to its concrete aspects prehended therein. We are thinking of these various aspects merely in so far as their effects on patterns and on locomotion are expressible in spatio-temporal terms. Accordingly, in the language of physics, the aspects of a primate are merely its contributions to the electromagnetic field. This is in fact exactly what we know of electrons and protons. An electron for us is merely the pattern of its aspects in its environment, so far as those aspects are relevant to the electromagnetic field.

Now in discussing the theory of relativity, we saw that the relative motion of two primates means simply that their organic patterns are utilising diverse space-time systems. If two primates do not continue either mutually at rest, or mutually in uniform relative motion, at least one of them is changing its intrinsic space-time system. The laws of motion express the conditions under which these changes of space-time systems are effected. The conditions for vibratory locomotion are founded upon these general laws of motion.

But it is possible that certain species of primates are apt to go to pieces under conditions which lead them to effect changes of space-time systems. Such species would only experience a long range of endurance, if they had succeeded in forming a favourable association among primates of different species, such that in this association the tendency to collapse is neutralised by the environment of the association. We can imagine the atomic nucleus as composed of a large number of primates of differing species, and perhaps with many primates of the same species, the whole association being such as to favour stability. An example of such an association is afforded by the association of a positive nucleus with negative electrons to obtain a neutral atom. The neutral atom is thereby shielded from any electric field which would otherwise produce changes in the space-time system of the atom.