Let us first consider what help the notion of antiprimes could give us in the definition of moments which we gave in the last lecture. Let the condition σ be the property of being a class whose members are all durations. An abstractive set which satisfies this condition is thus an abstractive set composed wholly of durations. It is convenient then to define a moment as the group of abstractive sets which are equal to some σ-antiprime, where the condition σ has this special meaning. It will be found on consideration (i) that each abstractive set forming a moment is a σ-antiprime, where σ has this special meaning, and (ii) that we have excluded from membership of moments abstractive sets of durations which all have one common boundary, either the initial boundary or the final boundary. We thus exclude special cases which are apt to confuse general reasoning. The new definition of a moment, which supersedes our previous definition, is (by the aid of the notion of antiprimes) the more precisely drawn of the two, and the more useful.
The particular condition which ‘σ’ stood for in the definition of moments included something additional to anything which can be derived from the bare notion of extension. A duration exhibits for thought a totality. The notion of totality is something beyond that of extension, though the two are interwoven in the notion of a duration.
In the same way the particular condition ‘σ’ required for the definition of an event-particle must be looked for beyond the mere notion of extension. The same remark is also true of the particular conditions requisite for the other spatial elements. This additional notion is obtained by distinguishing between the notion of ‘position’ and the notion of convergence to an ideal zero of extension as exhibited by an abstractive set of events.
In order to understand this distinction consider a point of the instantaneous space which we conceive as apparent to us in an almost instantaneous glance. This point is an event-particle. It has two aspects. In one aspect it is there, where it is. This is its position in the space. In another aspect it is got at by ignoring the circumambient space, and by concentrating attention on the smaller and smaller set of events which approximate to it. This is its extrinsic character. Thus a point has three characters, namely, its position in the whole instantaneous space, its extrinsic character, and its intrinsic character. The same is true of any other spatial element. For example an instantaneous volume in instantaneous space has three characters, namely, its position, its extrinsic character as a group of abstractive sets, and its intrinsic character which is the limit of natural properties which is indicated by any one of these abstractive sets.
Before we can talk about position in instantaneous space, we must evidently be quite clear as to what we mean by instantaneous space in itself. Instantaneous space must be looked for as a character of a moment. For a moment is all nature at an instant. It cannot be the intrinsic character of the moment. For the intrinsic character tells us the limiting character of nature in space at that instant. Instantaneous space must be an assemblage of abstractive elements considered in their mutual relations. Thus an instantaneous space is the assemblage of abstractive elements covered by some one moment, and it is the instantaneous space of that moment.
We have now to ask what character we have found in nature which is capable of according to the elements of an instantaneous space different qualities of position. This question at once brings us to the intersection of moments, which is a topic not as yet considered in these lectures.
The locus of intersection of two moments is the assemblage of abstractive elements covered by both of them. Now two moments of the same temporal series cannot intersect. Two moments respectively of different families necessarily intersect. Accordingly in the instantaneous space of a moment we should expect the fundamental properties to be marked by the intersections with moments of other families. If M be a given moment, the intersection of M with another moment A is an instantaneous plane in the instantaneous space of M; and if B be a third moment intersecting both M and A, the intersection of M and B is another plane in the space M. Also the common intersection of A, B, and M is the intersection of the two planes in the space M, namely it is a straight line in the space M. An exceptional case arises if B and M intersect in the same plane as A and M. Furthermore if C be a fourth moment, then apart from special cases which we need not consider, it intersects M in a plane which the straight line (A, B, M) meets. Thus there is in general a common intersection of four moments of different families. This common intersection is an assemblage of abstractive elements which are each covered (or ‘lie in’) all four moments. The three-dimensional property of instantaneous space comes to this, that (apart from special relations between the four moments) any fifth moment either contains the whole of their common intersection or none of it. No further subdivision of the common intersection is possible by means of moments. The ‘all or none’ principle holds. This is not an à priori truth but an empirical fact of nature.
It will be convenient to reserve the ordinary spatial terms ‘plane,’ ‘straight line,’ ‘point’ for the elements of the timeless space of a time-system. Accordingly an instantaneous plane in the instantaneous space of a moment will be called a ‘level,’ an instantaneous straight line will be called a ‘rect,’ and an instantaneous point will be called a ‘punct.’ Thus a punct is the assemblage of abstractive elements which lie in each of four moments whose families have no special relations to each other. Also if P be any moment, either every abstractive element belonging to a given punct lies in P, or no abstractive element of that punct lies in P.
Position is the quality which an abstractive element possesses in virtue of the moments in which it lies. The abstractive elements which lie in the instantaneous space of a given moment M are differentiated from each other by the various other moments which intersect M so as to contain various selections of these abstractive elements. It is this differentiation of the elements which constitutes their differentiation of position. An abstractive element which belongs to a punct has the simplest type of position in M, an abstractive element which belongs to a rect but not to a punct has a more complex quality of position, an abstractive element which belongs to a level and not to a rect has a still more complex quality of position, and finally the most complex quality of position belongs to an abstractive element which belongs to a volume and not to a level. A volume however has not yet been defined. This definition will be given in the next lecture.
Evidently levels, rects, and puncts in their capacity as infinite aggregates cannot be the termini of sense-awareness, nor can they be limits which are approximated to in sense-awareness. Any one member of a level has a certain quality arising from its character as also belonging to a certain set of moments, but the level as a whole is a mere logical notion without any route of approximation along entities posited in sense-awareness.