A three-dimensional locus of event-particles which is the common portion of the boundary of two adjoined events will be called a ‘solid.’ A solid may or may not lie completely in one moment. A solid which does not lie in one moment will be called ‘vagrant.’ A solid which does lie in one moment will be called a volume. A volume may be defined as the locus of the event-particles in which a moment intersects an event, provided that the two do intersect. The intersection of a moment and an event will evidently consist of those event-particles which are covered by the moment and lie in the event. The identity of the two definitions of a volume is evident when we remember that an intersecting moment divides the event into two adjoined events.
A solid as thus defined, whether it be vagrant or be a volume, is a mere aggregate of event-particles illustrating a certain quality of position. We can also define a solid as an abstractive element. In order to do so we recur to the theory of primes explained in the preceding lecture. Let the condition named σ stand for the fact that each of the events of any abstractive set satisfying it has all the event-particles of some particular solid lying in it. Then the group of all the σ-primes is the abstractive element which is associated with the given solid. I will call this abstractive element the solid as an abstractive element, and I will call the aggregate of event-particles the solid as a locus. The instantaneous volumes in instantaneous space which are the ideals of our sense-perception are volumes as abstractive elements. What we really perceive with all our efforts after exactness are small events far enough down some abstractive set belonging to the volume as an abstractive element.
It is difficult to know how far we approximate to any perception of vagrant solids. We certainly do not think that we make any such approximation. But then our thoughts—in the case of people who do think about such topics—are so much under the control of the materialistic theory of nature that they hardly count for evidence. If Einstein’s theory of gravitation has any truth in it, vagrant solids are of great importance in science. The whole boundary of a finite event may be looked on as a particular example of a vagrant solid as a locus. Its particular property of being closed prevents it from being definable as an abstractive element.
When a moment intersects an event, it also intersects the boundary of that event. This locus, which is the portion of the boundary contained in the moment, is the bounding surface of the corresponding volume of that event contained in the moment. It is a two-dimensional locus.
The fact that every volume has a bounding surface is the origin of the Dedekindian continuity of space.
Another event may be cut by the same moment in another volume and this volume will also have its boundary. These two volumes in the instantaneous space of one moment may mutually overlap in the familiar way which I need not describe in detail and thus cut off portions from each other’s surfaces. These portions of surfaces are ‘momental areas.’
It is unnecessary at this stage to enter into the complexity of a definition of vagrant areas. Their definition is simple enough when the four-dimensional manifold of event-particles has been more fully explored as to its properties.
Momental areas can evidently be defined as abstractive elements by exactly the same method as applied to solids. We have merely to substitute ‘area’ for a ‘solid’ in the words of the definition already given. Also, exactly as in the analogous case of a solid, what we perceive as an approximation to our ideal of an area is a small event far enough down towards the small end of one of the equal abstractive sets which belongs to the area as an abstractive element.
Two momental areas lying in the same moment can cut each other in a momental segment which is not necessarily rectilinear. Such a segment can also be defined as an abstractive element. It is then called a ‘momental route.’ We will not delay over any general consideration of these momental routes, nor is it important for us to proceed to the still wider investigation of vagrant routes in general. There are however two simple sets of routes which are of vital importance. One is a set of momental routes and the other of vagrant routes. Both sets can be classed together as straight routes. We proceed to define them without any reference to the definitions of volumes and surfaces.
The two types of straight routes will be called rectilinear routes and stations. Rectilinear routes are momental routes and stations are vagrant routes. Rectilinear routes are routes which in a sense lie in rects. Any two event-particles on a rect define the set of event-particles which lie between them on that rect. Let the satisfaction of the condition σ by an abstractive set mean that the two given event-particles and the event-particles lying between them on the rect all lie in every event belonging to the abstractive set. The group of σ-primes, where σ has this meaning, form an abstractive element. Such abstractive elements are rectilinear routes. They are the segments of instantaneous straight lines which are the ideals of exact perception. Our actual perception, however exact, will be the perception of a small event sufficiently far down one of the abstractive sets of the abstractive element.