A particular case of this axiom is that relative velocities are equal and opposite. Namely rest in α is represented in β by a velocity along the α-direction which is equal to the velocity along the β-direction in α which represents rest in β.
Finally the sixth axiom of congruence is that the relation of congruence is transitive. So far as this axiom applies to space, it is superfluous. For the property follows from our previous axioms. It is however necessary for time as a supplement to the axiom of kinetic symmetry. The meaning of the axiom is that if the time-unit of system α is congruent to the time-unit of system β, and the time-unit of system β is congruent to the time-unit of system γ, then the time-units of α and γ are also congruent.
By means of these axioms formulae for the transformation of measurements made in one time-system to measurements of the same facts of nature made in another time-system can be deduced. These formulae will be found to involve one arbitrary constant which I will call k.
It is of the dimensions of the square of a velocity. Accordingly four cases arise. In the first case k is zero. This case produces nonsensical results in opposition to the elementary deliverances of experience. We put this case aside.
In the second case k is infinite. This case yields the ordinary formulae for transformation in relative motion, namely those formulae which are to be found in every elementary book on dynamics.
In the third case, k is negative. Let us call it −c2, where c will be of the dimensions of a velocity. This case yields the formulae of transformation which Larmor discovered for the transformation of Maxwell’s equations of the electromagnetic field. These formulae were extended by H. A. Lorentz, and used by Einstein and Minkowski as the basis of their novel theory of relativity. I am not now speaking of Einstein’s more recent theory of general relativity by which he deduces his modification of the law of gravitation. If this be the case which applies to nature, then c must be a close approximation to the velocity of light in vacuo. Perhaps it is this actual velocity. In this connexion ‘in vacuo’ must not mean an absence of events, namely the absence of the all-pervading ether of events. It must mean the absence of certain types of objects.
In the fourth case, k is positive. Let us call it h2, where h will be of the dimensions of a velocity. This gives a perfectly possible type of transformation formulae, but not one which explains any facts of experience. It has also another disadvantage. With the assumption of this fourth case the distinction between space and time becomes unduly blurred. The whole object of these lectures has been to enforce the doctrine that space and time spring from a common root, and that the ultimate fact of experience is a space-time fact. But after all mankind does distinguish very sharply between space and time, and it is owing to this sharpness of distinction that the doctrine of these lectures is somewhat of a paradox. Now in the third assumption this sharpness of distinction is adequately preserved. There is a fundamental distinction between the metrical properties of point-tracks and rects. But in the fourth assumption this fundamental distinction vanishes.
Neither the third nor the fourth assumption can agree with experience unless we assume that the velocity c of the third assumption, and the velocity h of the fourth assumption, are extremely large compared to the velocities of ordinary experience. If this be the case the formulae of both assumptions will obviously reduce to a close approximation to the formulae of the second assumption which are the ordinary formulae of dynamical textbooks. For the sake of a name, I will call these textbook formulae the ‘orthodox’ formulae.
There can be no question as to the general approximate correctness of the orthodox formulae. It would be merely silly to raise doubts on this point. But the determination of the status of these formulae is by no means settled by this admission. The independence of time and space is an unquestioned presupposition of the orthodox thought which has produced the orthodox formulae. With this presupposition and given the absolute points of one absolute space, the orthodox formulae are immediate deductions. Accordingly, these formulae are presented to our imaginations as facts which cannot be otherwise, time and space being what they are. The orthodox formulae have therefore attained to the status of necessities which cannot be questioned in science. Any attempt to replace these formulae by others was to abandon the rôle of physical explanation and to have recourse to mere mathematical formulae.
But even in physical science difficulties have accumulated round the orthodox formulae. In the first place Maxwell’s equations of the electromagnetic field are not invariant for the transformations of the orthodox formulae; whereas they are invariant for the transformations of the formulae arising from the third of the four cases mentioned above, provided that the velocity c is identified with a famous electromagnetic constant quantity.