The source of order has already been indicated and that of congruence is now found. It depends on motion. From cogredience, perpendicularity arises; and from perpendicularity in conjunction with the reciprocal symmetry between the relations of any two time-systems congruence both in time and space is completely defined (cf. loc. cit.).

The resulting formulae are those for the electromagnetic theory of relativity, or, as it is now termed, the restricted theory. But there is this vital difference: the critical velocity c which occurs in these formulae has now no connexion whatever with light or with any other fact of the physical field (in distinction from the extensional structure of events). It simply marks the fact that our congruence determination embraces both times and spaces in one universal system, and therefore if two arbitrary units are chosen, one for all spaces and one for all times, their ratio will be a velocity which is a fundamental property of nature expressing the fact that times and spaces are really comparable.

The physical properties of nature are expressed in terms of material objects (electrons, etc.). The physical character of an event arises from the fact that it belongs to the field of the whole complex of such objects. From another point of view we can say that these objects are nothing else than our way of expressing the mutual correlation of the physical characters of events.

The spatio-temporal measurableness of nature arises from (i) the relation of extension between events, and (ii) the stratified character of nature arising from each of the alternative time-systems, and (iii) rest and motion, as exhibited in the relations of finite events to time-systems. None of these sources of measurement depend on the physical characters of finite events as exhibited by the situated objects. They are completely signified for events whose physical characters are unknown. Thus the spatio-temporal measurements are independent of the objectival physical characters. Furthermore the character of our knowledge of a whole duration, which is essentially derived from the significance of the part within the immediate field of discrimination, constructs it for us as a uniform whole independent, so far as its extension is concerned, of the unobserved characters of remote events. Namely, there is a definite whole of nature, simultaneously now present, whatever may be the character of its remote events. This consideration reinforces the previous conclusion. This conclusion leads to the assertion of the essential uniformity of the momentary spaces of the various time-systems, and thence to the uniformity of the timeless spaces of which there is one to each time-system.

The analysis of the general character of observed nature set forth above affords explanations of various fundamental observational facts: (α) It explains the differentiation of the one quality of extension into time and space. (β) It gives a meaning to the observed facts of geometrical and temporal position, of geometrical and temporal order, and of geometrical straightness and planeness. (γ) It selects one definite system of congruence embracing both space and time, and thus explains the concordance as to measurement which is in practice attained. (δ) It explains (consistently with the theory of relativity) the observed phenomena of rotation, e.g. Foucault’s pendulum, the equatorial bulge of the earth, the fixed senses of rotation of cyclones and anticyclones, and the gyro-compass. It does this by its admission of definite stratifications of nature which are disclosed by the very character of our knowledge of it. (ε) Its explanations of motion are more fundamental than those expressed in (δ); for it explains what is meant by motion itself. The observed motion of an extended object is the relation of its various situations to the stratification of nature expressed by the time-system fundamental to the observation. This motion expresses a real relation of the object to the rest of nature. The quantitative expression of this relation will vary according to the time-system selected for its expression.

This theory accords no peculiar character to light beyond that accorded to other physical phenomena such as sound. There is no ground for such a differentiation. Some objects we know by sight only, and other objects we know by sound only, and other objects we observe neither by light nor by sound but by touch or smell or otherwise. The velocity of light varies according to its medium and so does that of sound. Light moves in curved paths under certain conditions and so does sound. Both light and sound are waves of disturbance in the physical characters of events; and (as has been stated above, p. [188]) the actual course of the light is of no more importance for perception than is the actual course of the sound. To base the whole philosophy of nature upon light is a baseless assumption. The Michelson-Morley and analogous experiments show that within the limits of our inexactitude of observation the velocity of light is an approximation to the critical velocity ‘c’ which expresses the relation between our space and time units. It is provable that the assumption as to light by which these experiments and the influence of the gravitational field on the light-rays are explained is deducible as an approximation from the equations of the electromagnetic field. This completely disposes of any necessity for differentiating light from other physical phenomena as possessing any peculiar fundamental character.

It is to be observed that the measurement of extended nature by means of extended objects is meaningless apart from some observed fact of simultaneity inherent in nature and not merely a play of thought. Otherwise there is no meaning to the concept of one presentation of your extended measuring rod AB. Why not AB′ where B′ is the end B five minutes later? Measurement presupposes for its possibility nature as a simultaneity, and an observed object present then and present now. In other words, measurement of extended nature requires some inherent character in nature affording a rule of presentation of events. Furthermore congruence cannot be defined by the permanence of the measuring rod. The permanence is itself meaningless apart from some immediate judgment of self-congruence. Otherwise how is an elastic string differentiated from a rigid measuring rod? Each remains the same self-identical object. Why is one a possible measuring rod and the other not so? The meaning of congruence lies beyond the self-identity of the object. In other words measurement presupposes the measurable, and the theory of the measurable is the theory of congruence.

Furthermore the admission of stratifications of nature bears on the formulation of the laws of nature. It has been laid down that these laws are to be expressed in differential equations which, as expressed in any general system of measurement, should bear no reference to any other particular measure-system. This requirement is purely arbitrary. For a measure-system measures something inherent in nature; otherwise it has no connexion with nature at all. And that something which is measured by a particular measure-system may have a special relation to the phenomenon whose law is being formulated. For example the gravitational field due to a material object at rest in a certain time-system may be expected to exhibit in its formulation particular reference to spatial and temporal quantities of that time-system. The field can of course be expressed in any measure-systems, but the particular reference will remain as the simple physical explanation.

NOTE: ON THE GREEK CONCEPT OF A POINT

The preceding pages had been passed for press before I had the pleasure of seeing Sir T. L. Heath’s Euclid in Greek[14]. In the original Euclid’s first definition is