When we speak of the permanence of oceanic and continental areas as one of the established facts of modern research, we do not mean that existing continents and oceans have always maintained the exact areas and outlines that they now present, but merely, that while all of them have been undergoing changes in outline and extent from age to age, they have yet maintained substantially the same positions, and have never actually changed places with each other. There are, moreover, certain physical and biological facts which enable us to mark out these areas with some confidence.

We have seen that there are a large number of islands which may be classed as oceanic, because they have never formed parts of continents, but have originated in mid-ocean, and have derived their forms of life by migration across the sea. Their peculiarities are seen to be very marked in comparison with those islands which there is good reason to believe are really fragments of more extensive land areas, and are hence termed "continental." These continental islands consist in every case of a variety of stratified rocks of various ages, thus corresponding closely with the usual structure of continents; although many of the islands are small like Jersey or the Shetland Islands, or far from continental land like the Falkland Islands or New Zealand. They all contain indigenous mammalia or batrachia, and generally a much greater variety of birds, reptiles, insects, and plants, than do the oceanic islands. From these various characteristics we conclude that they have all once formed parts of continents, or at all events of much larger land areas, and have become isolated, either by subsidence of the intervening land or by the effects of long-continued marine denudation.

Now, if we trace the thousand-fathom line around all our existing continents we find that, with only two exceptions, every island which can be classed as "continental" falls within this line, while all that lie beyond it have the undoubted characteristics of "oceanic" islands. We, therefore, conclude that the thousand-fathom line marks out, approximately, the "continental area,"—that is, the limits within which continental development and change throughout known geological time have gone on. There may, of course, have been some extensions of land beyond this limit, while some areas within it may always have been ocean; but so far as we have any direct evidence, this line may be taken to mark out, approximately, the most probable boundary between the "continental area," which has always consisted of land and shallow sea in varying proportions, and the great oceanic basins, within the limits of which volcanic activity has been building up numerous islands, but whose profound depths have apparently undergone little change.

Madagascar and New Zealand.

The two exceptions just referred to are Madagascar and New Zealand, and all the evidence goes to show that in these cases the land connection with the nearest continental area was very remote in time. The extraordinary isolation of the productions of Madagascar—almost all the most characteristic forms of mammalia, birds, and reptiles of Africa being absent from it—renders it certain that it must have been separated from that continent very early in the Tertiary, if not as far back as the latter part of the Secondary period; and this extreme antiquity is indicated by a depth of considerably more than a thousand fathoms in the Mozambique Channel, though this deep portion is less than a hundred miles wide between the Comoro Islands and the mainland.[166] Madagascar is the only island on the globe with a fairly rich mammalian fauna which is separated from a continent by a depth greater than a thousand fathoms; and no other island presents so many peculiarities in these animals, or has preserved so many lowly organised and archaic forms. The exceptional character of its productions agrees exactly with its exceptional isolation by means of a very deep arm of the sea.

New Zealand possesses no known mammals and only a single species of batrachian; but its geological structure is perfectly continental. There is also much evidence that it does possess one mammal, although no specimens have been yet obtained.[167] Its reptiles and birds are highly peculiar and more numerous than in any truly oceanic island. Now the sea which directly separates New Zealand from Australia is more than 2000 fathoms deep, but in a north-west direction there is an extensive bank under 1000 fathoms, extending to and including Lord Howe's Island, while north of this are other banks of the same depth, approaching towards a submarine extension of Queensland on the one hand, and New Caledonia on the other, and altogether suggestive of a land union with Australia at some very remote period. Now the peculiar relations of the New Zealand fauna and flora with those of Australia and of the tropical Pacific Islands to the northward indicate such a connection, probably during the Cretaceous period; and here, again, we have the exceptional depth of the dividing sea and the form of the ocean bottom according well with the altogether exceptional isolation of New Zealand, an isolation which has been held by some naturalists to be great enough to justify its claim to be one of the primary Zoological Regions.

The Teachings of the Thousand-Fathom Line.

If now we accept the annexed map as showing us approximately how far beyond their present limits our continents may have extended during any portion of the Tertiary and Secondary periods, we shall obtain a foundation of inestimable value for our inquiries into those migrations of animals and plants during past ages which have resulted in their present peculiarities of distribution. We see, for instance, that the South American and African continents have always been separated by nearly as wide an ocean as at present, and that whatever similarities there may be in their productions must be due to the similar forms having been derived from a common origin in one of the great northern continents. The radical difference between the higher forms of life of the two continents accords perfectly with their permanent separation. If there had been any direct connection between them during Tertiary times, we should hardly have found the deep-seated differences between the Quadrumana of the two regions—no family even being common to both; nor the peculiar Insectivora of the one continent, and the equally peculiar Edentata of the other. The very numerous families of birds quite peculiar to one or other of these continents, many of which, by their structural isolation and varied development of generic and specific forms, indicate a high antiquity, equally suggest that there has been no near approach to a land connection during the same epoch.

Looking to the two great northern continents, we see indications of a possible connection between them both in the North Atlantic and the North Pacific oceans; and when we remember that from middle Tertiary times backward—so far as we know continuously to the earliest Palaeozoic epoch—a temperate and equable climate, with abundant woody vegetation, prevailed up to and within the arctic circle, we see what facilities may have been afforded for migration from one continent to the other, sometimes between America and Europe, sometimes between America and Asia. Admitting these highly probable connections, no bridging of the Atlantic in more southern latitudes (of which there is not a particle of evidence) will have been necessary to account for all the intermigration that has occurred between the two continents. If, on the other hand, we remember how long must have been the route, and how diverse must always have been the conditions between the more northern and the more southern portions of the American and Euro-Asiatic continents, we shall not be surprised that many widespread forms in either continent have not crossed into the other; and that while the skunks (Mephitis), the pouched rats (Saccomyidae), and the turkeys (Meleagris) are confined to America, the pigs and the hedgehogs, the true flycatchers and the pheasants are found only in the Euro-Asiatic continent. But, just as there have been periods which facilitated intermigration between America and the Old World, there have almost certainly been periods, perhaps of long duration even geologically, when these continents have been separated by seas as wide as, or even wider than, those of the present day; and thus may be explained such curious anomalies as the origination of the camel-tribe in America, and its entrance into Asia in comparatively recent Tertiary times, while the introduction of oxen and bears into America from the Euro-Asiatic continent appears to have been equally recent.[168]

We shall find on examination that this view of the general permanence of the oceanic and continental areas, with constant minor fluctuations of land and sea over the whole extent of the latter, enables us to understand, and offer a rational explanation of, most of the difficult problems of geographical distribution; and further, that our power of doing this is in direct proportion to our acquaintance with the distribution of fossil forms of life during the Tertiary period. We must, also, take due note of many other facts of almost equal importance for a due appreciation of the problems presented for solution, the most essential being, the various powers of dispersal possessed by the different groups of animals and plants, the geological antiquity of the species and genera, and the width and depth of the seas which separate the countries they, inhabit. A few illustrations will now be given of the way in which these branches of knowledge enable us to deal with the difficulties and anomalies that present themselves.