Having arrived at the conclusion that our existing oceans have remained practically unaltered throughout the Tertiary and Secondary periods of geology, and that the distribution of the mammalia is such as might have been brought about by their known powers of dispersal, and by such changes of land and sea as have probably or certainly occurred, we are, of course, restricted to similar causes to explain the much wider and sometimes more eccentric distribution of other classes of animals and of plants. In doing so, we have to rely partly on direct evidence of dispersal, afforded by the land organisms that have been observed far out at sea, or which have taken refuge on ships, as well as by the periodical visitants to remote islands; but very largely on indirect evidence, afforded by the frequent presence of certain groups on remote oceanic islands, which some ancestral forms must, therefore, have reached by transmission across the ocean from distant lands.

Birds.

These vary much in their powers of flight, and their capability of traversing wide seas and oceans. Many swimming and wading birds can continue long on the wing, fly swiftly, and have, besides, the power of resting safely on the surface of the water. These would hardly be limited by any width of ocean, except for the need of food; and many of them, as the gulls, petrels, and divers, find abundance of food on the surface of the sea itself. These groups have a wide distribution across the oceans; while waders—especially plovers, sandpipers, snipes, and herons—are equally cosmopolitan, travelling along the coasts of all the continents, and across the narrow seas which separate them. Many of these birds seem unaffected by climate, and as the organisms on which they feed are equally abundant on arctic, temperate, and tropical shores, there is hardly any limit to the range even of some of the species.

Land-birds are much more restricted in their range, owing to their usually limited powers of flight, their inability to rest on the surface of the sea or to obtain food from it, and their greater specialisation, which renders them less able to maintain themselves in the new countries they may occasionally reach. Many of them are adapted to live only in woods, or in marshes, or in deserts; they need particular kinds of food or a limited range of temperature; and they are adapted to cope only with the special enemies or the particular group of competitors among which they have been developed. Such birds as these may pass again and again to a new country, but are never able to establish themselves in it; and it is this organic barrier, as it is termed, rather than any physical barrier, which, in many cases, determines the presence of a species in one area and its absence from another. We must always remember, therefore, that, although the presence of a species in a remote oceanic island clearly proves that its ancestors must at one time have found their way there, the absence of a species does not prove the contrary, since it also may have reached the island, but have been unable to maintain itself, owing to the inorganic or organic conditions not being suitable to it. This general principle applies to all classes of organisms, and there are many striking illustrations of it. In the Azores there are eighteen species of land-birds which are permanent residents, but there are also several others which reach the islands almost every year after great storms, but have never been able to establish themselves. In Bermuda the facts are still more striking, since there are only ten species of resident birds, while no less than twenty other species of land-birds and more than a hundred species of waders and aquatics are frequent visitors, often in great numbers, but are never able to establish themselves. On the same principle we account for the fact that, of the many continental insects and birds that have been let loose, or have escaped from confinement, in this country, hardly one has been able to maintain itself, and the same phenomenon is still more striking in the case of plants. Of the thousands of hardy plants which grow easily in our gardens, very few have ever run wild, and when the experiment is purposely tried it invariably fails. Thus A. de Candolle informs us that several botanists of Paris, Geneva, and especially of Montpellier, have sown the seeds of many hundreds of species of exotic hardy plants, in what appeared to be the most favourable situations, but that in hardly a single case has any one of them become naturalised.[170] Still more, then, in plants than in animals the absence of a species does not prove that it has never reached the locality, but merely that it has not been able to maintain itself in competition with the native productions. In other cases, as we have seen, facts of an exactly opposite nature occur. The rat, the pig, and the rabbit, the water-cress, the clover, and many other plants, when introduced into New Zealand, nourish exceedingly, and even exterminate their native competitors; so that in these cases we may feel sure that the species in question did not exist in New Zealand simply because they had been unable to reach that country by their natural means of dispersal. I will now give a few cases, in addition to those recorded in my previous works, of birds and insects which have been observed far from any land.

Birds and Insects at Sea.

Captain D. Fullarton of the ship Timaru recorded in his log the occurrence of a great number of small land-birds about the ship on 15th March 1886, when in Lat. 48° 31' N., Long. 8° 16' W. He says: "A great many small land-birds about us; put about sixty into a coop, evidently tired out." And two days later, 17th March, "Over fifty of the birds cooped on 15th died, though fed. Sparrows, finches, water-wagtails, two small birds, name unknown, one kind like a linnet, and a large bird like a starling. In all there have been on board over seventy birds, besides some that hovered about us for some time and then fell into the sea exhausted." Easterly winds and severe weather were experienced at the time.[171] The spot where this remarkable flight of birds was met with is about 160 miles due west of Brest, and this is the least distance the birds must have been carried. It is interesting to note that the position of the ship is nearly in the line from the English and French coasts to the Azores, where, after great storms, so many bird stragglers arrive annually. These birds were probably blown out to sea during their spring migration along the south coast of England to Wales and Ireland. During the autumnal migration, however, great flocks of birds—especially starlings, thrushes, and fieldfares—have been observed every year flying out to sea from the west coast of Ireland, almost the whole of which must perish. At the Nash Lighthouse, in the Bristol Channel on the coast of Glamorganshire, an enormous number of small birds were observed on 3d September, including nightjars, buntings, white-throats, willow-wrens, cuckoos, house-sparrows, robins, wheatears, and blackbirds. These had probably crossed from Somersetshire, and had they been caught by a storm the larger portion of them must have been blown out to sea.[172]

These facts enable us to account sufficiently well for the birds of oceanic islands, the number and variety of which are seen to be proportionate to their facilities for reaching the island and maintaining themselves in it. Thus, though more birds yearly reach Bermuda than the Azores, the number of residents in the latter islands is much larger, due to the greater extent of the islands, their number, and their more varied surface. In the Galapagos the land-birds are still more numerous, due in part to their larger area and greater proximity to the continent, but chiefly to the absence of storms, so that the birds which originally reached the islands have remained long isolated and have developed into many closely allied species adapted to the special conditions. All the species of the Galapagos but one are peculiar to the islands, while the Azores possess only one peculiar species, and Bermuda none—a fact which is clearly due to the continual immigration of fresh individuals keeping up the purity of the breed by intercrossing. In the Sandwich Islands, which are extremely isolated, being more than 2000 miles from any continent or large island, we have a condition of things similar to what prevails in the Galapagos, the land-birds, eighteen in number, being all peculiar, and belonging, except one, to peculiar genera. These birds have probably all descended from three or four original types which reached the islands at some remote period, probably by means of intervening islets that have since disappeared. In St. Helena we have a degree of permanent isolation which has prevented any land-birds from reaching the island; for although its distance from the continent, 1100 miles, is not so great as in the case of the Sandwich Islands, it is situated in an ocean almost entirely destitute of small islands, while its position within the tropics renders it free from violent storms. Neither is there, on the nearest part of the coast of Africa, a perpetual stream of migrating birds like that which supplies the innumerable stragglers which every year reach Bermuda and the Azores.

Insects.

Winged insects have been mainly dispersed in the same way as birds, by their power of flight, aided by violent or long-continued winds. Being so small, and of such low specific gravity, they are occasionally carried to still greater distances; and thus no islands, however remote, are altogether without them. The eggs of insects, being often deposited in borings or in crevices of timber, may have been conveyed long distances by floating trees, as may the larvae of those species which feed on wood. Several cases have been published of insects coming on board ships at great distances from land; and Darwin records having caught a large grasshopper when the ship was 370 miles from the coast of Africa, whence the insect had probably come.

In the Entomologists' Monthly Magazine for June 1885, Mr. MacLachlan has recorded the occurrence of a swarm of moths in the Atlantic ocean, from the log of the ship Pleione. The vessel was homeward bound from New Zealand, and in Lat. 6° 47' N., Long. 32° 50' W., hundreds of moths appeared about the ship, settling in numbers on the spars and rigging. The wind for four days previously had been very light from north, north-west, or north-east, and sometimes calm. The north-east trade wind occasionally extends to the ship's position at that time of year. The captain adds that "frequently, in that part of the ocean, he has had moths and butterflies come on board." The position is 960 miles south-west of the Cape Verde Islands, and about 440 north-east of the South American coast. The specimen preserved is Deiopeia pulchella, a very common species in dry localities in the Eastern tropics, and rarely found in Britain, but, Mr. MacLachlan thinks, not found in South America. They must have come, therefore, from the Cape Verde Islands, or from some parts of the African coast, and must have traversed about a thousand miles of ocean with the assistance, no doubt, of a strong north-east trade wind for a great part of the distance. In the British Museum collection there is a specimen of the same moth caught at sea during the voyage of the Rattlesnake, in Lat. 6° N., Long. 22-1/2° W., being between the former position and Sierra Leone, thus rendering it probable that the moths came from that part of the African coast, in which case the swarm encountered by the Pleione must have travelled more than 1200 miles.