The Number of known Species of Extinct Animals.

When we state that the known fossil mollusca are considerably more numerous than those which now live on the earth, it appears at first sight that our knowledge is very complete, but this is far from being the case. The species have been continually changing throughout geological time, and at each period have probably been as numerous as they are now. If we divide the fossiliferous strata into twelve great divisions—the Pliocene, Miocene, Eocene, Cretaceous, Oolite, Lias, Trias, Permian, Carboniferous, Devonian, Silurian, and Cambrian,—we find not only that each has a very distinct and characteristic molluscan fauna, but that the different subdivisions often present a widely different series of species; so that although a certain number of species are common to two or more of the great divisions, the totality of the species that have lived upon the earth must be very much more than twelve times—perhaps even thirty or forty times—the number now living. In like manner, although the species of fossil mammals now recognised by more or less fragmentary fossil remains may not be much less numerous than the living species, yet the duration of existence of these was comparatively so short that they were almost completely changed, perhaps six or seven times, during the Tertiary period; and this is certainly only a fragment of the geological time during which mammalia existed on the globe.

There is also reason to believe that the higher animals were much more abundant in species during past geological epochs than now, owing to the greater equability of the climate which rendered even the arctic regions as habitable as the temperate zones are in our time.

The same equable climate would probably cause a more uniform distribution of moisture, and render what are now desert regions capable of supporting abundance of animal life. This is indicated by the number and variety of the species of large animals that have been found fossil in very limited areas which they evidently inhabited at one period. M. Albert Gaudry found, in the deposits of a mountain stream at Pikermi in Greece, an abundance of large mammalia such as are nowhere to be found living together at the present time. Among them were two species of Mastodon, two different rhinoceroses, a gigantic wild boar, a camel and a giraffe larger than those now living, several monkeys, carnivora ranging from martens and civets to lions and hyaenas of the largest size, numerous antelopes of at least five distinct genera, and besides these many forms altogether extinct. Such were the great herds of Hipparion, an ancestral form of horse; the Helladotherium, a huge animal bigger than the giraffe; the Ancylotherium, one of the Edentata; the huge Dinotherium; the Aceratherium, allied to the rhinoceros; and the monstrous Chalicotherium, allied to the swine and ruminants, but as large as a rhinoceros; and to prey upon these, the great Machairodus or sabre-toothed tiger. And all these remains were found in a space 300 paces long by 60 paces broad, many of the species existing in enormous quantities.

The Pikermi fossils belong to the Upper Miocene formation, but an equally rich deposit of Upper Eocene age has been discovered in South-Western France at Quercy, where M. Filhol has determined the presence of no less than forty-two species of beasts of prey alone. Equally remarkable are the various discoveries of mammalian fossils in North America, especially in the old lake bottoms now forming what are called the "bad lands" of Dakota and Nebraska, belonging to the Miocene period. Here are found an enormous assemblage of remains, often perfect skeletons, of herbivora and carnivora, as varied and interesting as those from the localities already referred to in Europe; but altogether distinct, and far exceeding, in number and variety of species of the larger animals, the whole existing fauna of North America. Very similar phenomena occur in South America and in Australia, leading us to the conclusion that the earth at the present time is impoverished as regards the larger animals, and that at each successive period of Tertiary time, at all events, it contained a far greater number of species than now inhabit it. The very richness and abundance of the remains which we find in limited areas, serve to convince us how imperfect and fragmentary must be our knowledge of the earth's fauna at any one past epoch; since we cannot believe that all, or nearly all, of the animals which inhabited any district were entombed in a single lake, or overwhelmed by the floods of a single river.

But the spots where such rich deposits occur are exceedingly few and far between when compared with the vast areas of continental land, and we have every reason to believe that in past ages, as now, numbers of curious species were rare or local, the commoner and more abundant species giving a very imperfect idea of the existing series of animal forms. Yet more important, as showing the imperfection of our knowledge, is the enormous lapse of time between the several formations in which we find organic remains in any abundance, so vast that in many cases we find ourselves almost in a new world, all the species and most of the genera of the higher animals having undergone a complete change.

Causes of the Imperfection of the Geological Record.

These facts are quite in accordance with the conclusions of geologists as to the necessary imperfection of the geological record, since it requires the concurrence of a number of favourable conditions to preserve any adequate representation of the life of a given epoch. In the first place, the animals to be preserved must not die a natural death by disease, or old age, or by being the prey of other animals, but must be destroyed by some accident which shall lead to their being embedded in the soil. They must be either carried away by floods, sink into bogs or quicksands, or be enveloped in the mud or ashes of a volcanic eruption; and when thus embedded they must remain undisturbed amid all the future changes of the earth's surface.

But the chances against this are enormous, because denudation is always going on, and the rocks we now find at the earth's surface are only a small fragment of those which were originally laid down. The alternations of marine and freshwater deposits, and the frequent unconformability of strata with those which overlie them, tell us plainly of repeated elevations and depressions of the surface, and of denudation on an enormous scale. Almost every mountain range, with its peaks, ridges, and valleys, is but the remnant of some vast plateau eaten away by sub-aerial agencies; every range of sea-cliffs tell us of long slopes of land destroyed by the waves; while almost all the older rocks which now form the surface of the earth have been once covered with newer deposits which have long since disappeared. Nowhere are the evidences of this denudation more apparent than in North and South America, where granitic or metamorphic rocks cover an area hardly less than that of all Europe. The same rocks are largely developed in Central Africa and Eastern Asia; while, besides those portions that appear exposed on the surface, areas of unknown extent are buried under strata which rest on them uncomformably, and could not, therefore, constitute the original capping under which the whole of these rocks must once have been deeply buried; because granite can only be formed, and metamorphism can only go on, deep down in the crust of the earth. What an overwhelming idea does this give us of the destruction of whole piles of rock, miles in thickness and covering areas comparable with those of continents; and how great must have been the loss of the innumerable fossil forms which those rocks contained! In view of such destruction we are forced to conclude that our palaeontological collections, rich though they may appear, are really but small and random samples, giving no adequate idea of the mighty series of organism which have lived upon the earth.[183]

Admitting, however, the extreme imperfection of the geological record as a whole, it may be urged that certain limited portions of it are fairly complete—as, for example, the various Miocene deposits of India, Europe, and North America,—and that in these we ought to find many examples of species and genera linked together by intermediate forms. It may be replied that in several cases this really occurs; and the reason why it does not occur more often is, that the theory of evolution requires that distinct genera should be linked together, not by a direct passage, but by the descent of both from a common ancestor, which may have lived in some much earlier age the record of which is either wanting or very incomplete. An illustration given by Mr. Darwin will make this more clear to those who have not studied the subject. The fantail and pouter pigeons are two very distinct and unlike breeds, which we yet know to have been both derived from the common wild rock-pigeon. Now, if we had every variety of living pigeon before us, or even all those which have lived during the present century, we should find no intermediate types between these two—none combining in any degree the characters of the pouter with that of the fantail. Neither should we ever find such an intermediate form, even had there been preserved a specimen of every breed of pigeon since the ancestral rock-pigeon was first tamed by man—a period of probably several thousand years. We thus see that a complete passage from one very distinct species to another could not be expected even had we a complete record of the life of any one period. What we require is a complete record of all the species that have existed since the two forms began to diverge from their common ancestor, and this the known imperfection of the record renders it almost impossible that we should ever attain. All that we have a right to expect is, that, as we multiply the fossil forms in any group, the gaps that at first existed in that group shall become less wide and less numerous; and also that, in some cases, a tolerably direct series shall be found, by which the more specialised forms of the present day shall be connected with more generalised ancestral types. We might also expect that when a country is now characterised by special groups of animals, the fossil forms that immediately preceded them shall, for the most part, belong to the same groups; and further, that, comparing the more ancient with the more modern types, we should find indications of progression, the earlier forms being, on the whole, lower in organisation, and less specialised in structure than the later. Now evidence of evolution of these varied kinds is what we do find, and almost every fresh discovery adds to their number and cogency. In order, therefore, to show that the testimony given by geology is entirely in favour of the theory of descent with modification, some of the more striking of the facts will now be given.