FIG. 34.—Diagram illustrating the Geological Distribution of Plants.

The diagram (Fig. 34), slightly modified from one given by Mr. Ward, will illustrate our present knowledge of the development of the vegetable kingdom in geological time. The shaded vertical bands exhibit the proportions of the fossil forms actually discovered, while the outline extensions are intended to show what we may fairly presume to have been the approximate periods of origin, and progressive increase of the number of species, of the chief divisions of the vegetable kingdom. These seem to accord fairly well with their respective grades of development, and thus offer no obstacle to the acceptance of the belief in their progressive evolution.

Geological Distribution of Insects.

The marvellous development of insects into such an endless variety of forms, their extreme specialisation, and their adaptation to almost every possible condition of life, would almost necessarily imply an extreme antiquity. Owing, however, to their small size, their lightness, and their usually aerial habits, no class of animals has been so scantily preserved in the rocks; and it is only recently that the whole of the scattered material relating to fossil insects and their allies have been brought together by Mr. Samuel H. Scudder of Boston, and we have thus learned their bearing on the theory of evolution.[194]

The most striking fact which presents itself on a glance at the distribution of fossil insects, is the completeness of the representation of all the chief types far back in the Secondary period, at which time many of the existing families appear to have been perfectly differentiated. Thus in the Lias we find dragonflies "apparently as highly specialised as to-day, no less than four tribes being present." Of beetles we have undoubted Curculionidae from the Lias and Trias; Chrysomelidae in the same deposits; Cerambycidae in the Oolites; Scarabaeidae in the Lias; Buprestidae in the Trias; Elateridae, Trogositidae, and Nitidulidae in the Lias; Staphylinidae in the English Purbecks; while Hydrophilidae, Gyrinidae, and Carabidae occur in the Lias. All these forms are well represented, but there are many other families doubtfully identified in equally ancient rocks. Diptera of the families Empidae, Asilidae, and Tipulidae have been found as far back as the Lias. Of Lepidoptera, Sphingidae and Tineidae have been found in the Oolite; while ants, representing the highly specialised Hymenoptera, have occurred in the Purbeck and Lias.

This remarkable identity of the families of very ancient with those of existing insects is quite comparable with the apparently sudden appearance of existing genera of trees in the Cretaceous epoch. In both cases we feel certain that we must go very much farther back in order to find the ancestral forms from which they were developed, and that at any moment some fresh discovery may revolutionise our ideas as to the antiquity of certain groups. Such a discovery was made while Mr. Scudder's work was passing through the press. Up to that date all the existing orders of true insects appeared to have originated in the Trias, the alleged moth and beetle of the Coal formation having been incorrectly determined. But now, undoubted remains of beetles have been found in the Coal measures of Silesia, thus supporting the interpretation of the borings in carboniferous trees as having been made by insects of this order, and carrying back this highly specialised form of insect life well into Palaeozoic times. Such a discovery renders all speculation as to the origin of true insects premature, because we may feel sure that all the other orders of insects, except perhaps hymenoptera and lepidoptera, were contemporaneous with the highly specialised beetles.

The less highly organised terrestrial arthropoda—the Arachnida and Myriapoda—are, as might be expected, much more ancient. A fossil spider has been found in the Carboniferous, and scorpions in the Upper Silurian rocks of Scotland, Sweden, and the United States. Myriapoda have been found abundantly in the Carboniferous and Devonian formations; but all are of extinct orders, exhibiting a more generalised structure than living forms.

Much more extraordinary, however, is the presence in the Palaeozoic formations of ancestral forms of true insects, termed by Mr. Scudder Palaeodictyoptera. They consist of generalised cockroaches and walking-stick insects (Orthopteroidea); ancient mayflies and allied forms, of which there are six families and more than thirty genera (Neuropteroidea); three genera of Hemipteroidea resembling various Homoptera and Hemiptera, mostly from the Carboniferous formation, a few from the Devonian, and one ancestral cockroach (Palaeoblattina) from the Middle Silurian sandstone of France. If this occurrence of a true hexapod insect from the Middle Silurian be really established, taken in connection with the well-defined Coleoptera from the Carboniferous, the origin of the entire group of terrestrial arthropoda is necessarily thrown back into the Cambrian epoch, if not earlier. And this cannot be considered improbable in view of the highly differentiated land plants—ferns, equisetums, and lycopods—in the Middle or Lower Silurian, and even a conifer (Cordaites Robbii) in the Upper Silurian; while the beds of graphite in the Laurentian were probably formed from terrestrial vegetation.

On the whole, then, we may affirm that, although the geological record of the insect life of the earth is exceptionally imperfect, it yet decidedly supports the evolution hypothesis. The most specialised order, Lepidoptera, is the most recent, only dating back to the Oolite; the Hymenoptera, Diptera, and Homoptera go as far as the Lias; while the Orthoptera and Neuroptera extend to the Trias. The recent discovery of Coleoptera in the Carboniferous shows, however, that the preceding limits are not absolute, and will probably soon be overpassed. Only the more generalised ancestral forms of winged insects have been traced back to Silurian time, and along with them the less highly organised scorpions; facts which serve to show us the extreme imperfection of our knowledge, and indicate possibilities of a world of terrestrial life in the remotest Palaeozoic times.