"Spiny and prickly plants are also rare in New Zealand, but there are the formidably armed species of wild Spaniard (Aciphylla), one species of Rubus, the pungent-leaved Epacrideae and a few others."

Mr. J.G. Baker of Kew, who has specially studied the flora of Mauritius and the adjacent islands, also writes me on this point. He says: "Taking Mauritius alone, I do not call to mind a single species that is a spinose endemic tree or shrub. If you take the whole group of islands (Mauritius, Bourbon, Seychelles, and Rodriguez), there will be about a dozen species, but then nine of these are palms. Leaving out palms, the trees and shrubs of that part of the world are exceptionally non-spinose."

These are certainly remarkable facts, and quite inexplicable on the theory of spines being caused solely by checked vegetative growth, due to weakness of constitution or to an arid soil and climate. For the Galapagos and many parts of the Sandwich Islands are very arid, as is a considerable part of the North Island of New Zealand. Yet in our own moist climate and with our very limited number of trees and shrubs we have about eighteen spiny or prickly species, more, apparently, than in the whole endemic floras of the Mauritius, Sandwich Islands, and Galapagos, though these are all especially rich in shrubby and arboreal species. In New Zealand the prickly Rubus is a leafless trailing plant, and its prickles are probably a protection against the large snails of the country, several of which have shells from two to three and a half inches long.[210] The "wild Spaniards" are very spiny herbaceous Umbelliferae, and may have gained their spines to preserve them from being trodden down or eaten by the Moas, which, for countless ages, took the place of mammals in New Zealand. The exact use or meaning of the spines in palms is more doubtful, though they are, no doubt, protective against some animals; but it is certainly an extraordinary fact that in the entire flora of the Mauritius, so largely consisting of trees and shrubs, not a single endemic species should be thorny or spiny.

If now we consider that every continental flora produces a considerable proportion of spiny and thorny species, and that these rise to a maximum in South Africa, where herbivorous mammalia were (before the settlement of the country), perhaps, more abundant and varied than in any other part of the world; while another district, remarkable for well-armed vegetation, is Chile, where the camel-like vicugnas, llamas, and alpacas, and an abundance of large rodents wage perpetual war against shrubby vegetation, we shall see the full significance of the almost total absence of thorny and spiny plants in the chief oceanic islands; and so far from "excluding the hypothesis of mammalian selection altogether," we shall find in this hypothesis the only satisfactory explanation of the facts.

From the brief consideration of Professor Geddes's theory now given, we conclude that, although the antagonism between vegetative and reproductive growth is a real agency, and must be taken account of in our endeavour to explain many of the fundamental facts in the structure and form of plants, yet it is so overpowered and directed at every step by the natural selection of favourable variations, that the results of its exclusive and unmodified action are nowhere to be found in nature. It may be allowed to rank as one of those "laws of growth," of which so many have now been indicated, and which were always recognised by Darwin as underlying all variation; but unless we bear in mind that its action must always be subordinated to natural selection, and that it is continually checked, or diverted, or even reversed by the necessity of adaptation to the environment, we shall be liable to fall into such glaring errors as the imputing to "ebbing vitality" alone such a widespread phenomenon as the occurrence of spines and thorns, while ignoring altogether the influence of the organic environment in their production.[211]

The sketch now given of the chief attempts that have been made to prove that either the direct action of the environment or certain fundamental laws of variation are independent causes of modification of species, shows us that their authors have, in every case, failed to establish their contention. Any direct action of the environment, or any characters acquired by use or disuse, can have no effect whatever upon the race unless they are inherited; and that they are inherited in any case, except when they directly affect the reproductive cells, has not been proved. On the other hand, as we shall presently show, there is much reason for believing that such acquired characters are in their nature non-heritable.

Variation and Selection Overpower the Effects of Use and Disuse.

But there is another objection to this theory arising from the very nature of the effects produced. In each generation the effects of use or disuse, or of effort, will certainly be very small, while of this small effect it is not maintained that the whole will be always inherited by the next generation. How small the effect is we have no means of determining, except in the case of disuse, which Mr. Darwin investigated carefully. He found that in twelve fancy breeds of pigeons, which are often kept in aviaries, or if free fly but little, the sternum had been reduced by about one-seventh or one-eighth of its entire length, and that of the scapula about one-ninth. In domestic ducks the weight of the wing-bones in proportion to that of the whole skeleton had decreased about one-tenth. In domestic rabbits the bones of the legs were found to have increased in weight in due proportion to the increased weight of the body, but those of the hind legs were rather less in proportion to those of the fore legs than in the wild animal, a difference which may be imputed to their being less used in rapid motion. The pigeons, therefore, afford the greatest amount of reduction by disuse—one-seventh of the length of the sternum. But the pigeon has certainly been domesticated four or five thousand years; and if the reduction of the wings by disuse has only been going on for the last thousand years, the amount of reduction in each generation would be absolutely imperceptible, and quite within the limits of the reduction due to the absence of selection, as already explained. But, as we have seen in Chapter III, the fortuitous variation of every part or organ usually amounts to one-tenth, and often to one-sixth of the average dimensions—that is, the fortuitous variation in one generation among a limited number of the individuals of a species is as great as the cumulative effects of disuse in a thousand generations! If we assume that the effects of use or of effort in the individual are equal to the effects of disuse, or even ten or a hundred times greater, they will even then not equal, in each generation, the amount of the fortuitous variations of the same part. If it be urged that the effects of use would modify all the individuals of a species, while the fortuitous variations to the amount named only apply to a portion of them, it may be replied, that that portion is sufficiently large to afford ample materials for selection, since it often equals the numbers that can annually survive; while the recurrence in each successive generation of a like amount of variation would render possible such a rapid adjustment to new conditions that the effects of use or disuse would be as nothing in comparison. It follows, that even admitting the modifying effects of the environment, and that such modifications are inherited, they would yet be entirely swamped by the greater effects of fortuitous variation, and the far more rapid cumulative results of the selection of such variations.

Supposed Action of the Environment in Initiating Variations.

It is, however, urged that the reaction of the environment initiates variations, which without it would never arise; such, for instance, as the origin of horns through the pressures and irritations caused by butting, or otherwise using the head as a weapon or for defence. Admitting, for the sake of argument, that this is so, all the evidence we possess shows that, from the very first appearance of the rudiment of such an organ, it would vary to a greater extent than the amount of growth directly produced by use; and these variations would be subject to selection, and would thus modify the organ in ways which use alone would never bring about. We have seen that this has been the case with the branching antlers of the stag, which have been modified by selection, so as to become useful in other ways than as a mere weapon; and the same has almost certainly been the case with the variously curved and twisted horns of antelopes. In like manner, every conceivable rudiment would, from its first appearance, be subject to the law of variation and selection, to which, thenceforth, the direct effect of the environment would be altogether subordinate.