The differentiation of the two forms into distinct species, with the increase of infertility between them, would be greatly assisted by two other important factors in the problem. It has already been shown that, with each modification of form and habits, and especially with modifications of colour, there arises a disinclination of the two forms to pair together; and this would produce an amount of isolation which would greatly assist the specialisation of the forms in adaptation to their different conditions of life. Again, evidence has been adduced that change of conditions or of mode of life is a potent cause of disturbance of the reproductive system, and, consequently, of infertility. We may therefore assume that, as the two forms adopted more and more different modes of life, and perhaps acquired also decided peculiarities of form and coloration, the infertility between them would increase or become more general; and as we have seen that every such increase of infertility would give that portion of the species in which it arose an advantage over the remaining portions in which the two varieties were more fertile together, all this induced infertility would maintain itself, and still further increase the general infertility between the two forms of the species.

It follows, then, that specialisation to separate conditions of life, differentiation of external characters, disinclination to cross-unions, and the infertility of the hybrid produce of these unions, would all proceed pari passu, and would ultimately lead to the production of two distinct forms having all the characteristics, physiological as well as structural, of true species.

In the case now discussed it has been supposed, that some amount of general infertility might arise in correlation with the different modes of life of two varieties or incipient species. A considerable body of facts already adduced renders it probable that this is the mode in which any widespread infertility would arise; and, if so, it has been shown that, by the influence of natural selection and the known laws which affect varieties, the infertility would be gradually increased. But, if we suppose the infertility to arise sporadically within the two forms, and to affect only a small proportion of the individuals in any area, it will be difficult, if not impossible, to show that such infertility would have any tendency to increase, or would produce any but a prejudicial effect. If, for example, five per cent of each form thus varied so as to be infertile with the other form, the result would be hardly perceptible, because the individuals which formed cross-unions and produced hybrids would constitute a very small portion of the whole species; and the hybrid offspring, being at a disadvantage in the struggle for existence and being themselves infertile, would soon die out, while the much more numerous fertile portion of the two forms would increase rapidly, and furnish a sufficient number of pure-bred offspring of each form to take the place of the somewhat inferior hybrids between them whenever the struggle for existence became severe. We must suppose that the normal fertile forms would transmit their fertility to their progeny, and the few infertile forms their infertility; but the latter would necessarily lose half their proper increase by the sterility of their hybrid offspring whenever they crossed with the other form, and when they bred with their own form the tendency to sterility would die out except in the very minute proportion of the five per cent (one-twentieth) that chance would lead to pair together. Under these circumstances the incipient sterility between the two forms would rapidly be eliminated, and could never rise much above the numbers which were produced by sporadic variation each year.

It was, probably, by a consideration of some such case as this that Mr. Darwin came to the conclusion that infertility arising between incipient species could not be increased by natural selection; and this is the more likely, as he was always disposed to minimise both the frequency and the amount even of structural variations.

We have yet to notice another mode of action of natural selection in favouring and perpetuating any infertility that may arise between two incipient species. If several distinct species are undergoing modification at the same time and in the same area, to adapt them to some new conditions that have arisen there, then any species in which the structural or colour differences that have arisen between it and its varieties or close allies were correlated with infertility of the crosses between them, would have an advantage over the corresponding varieties of other species in which there was no such physiological peculiarity. Thus, incipient species which were infertile together would have an advantage over other incipient species which were fertile, and, whenever the struggle for existence became severe, would prevail over them and take their place. Such infertility, being correlated with constitutional or structural differences, would probably, as already suggested, go on increasing as these differences increased; and thus, by the time the new species became fully differentiated from its parent form (or brother variety) the infertility might have become as well marked as we usually find it to be between distinct species.

This discussion has led us to some conclusions of the greatest importance as bearing on the difficult problem of the cause of the sterility of the hybrids between distinct species. Accepting, as highly probable, the fact of variations in fertility occurring in correlation with variations in habits, colour, or structure, we see, that so long as such variations occurred only sporadically, and affected but a small proportion of the individuals in any area, the infertility could not be increased by natural selection, but would tend to die out almost as fast as it was produced. If, however, it was so closely correlated with physical variations or diverse modes of life as to affect, even in a small degree, a considerable proportion of the individuals of the two forms in definite areas, it would be preserved by natural selection, and the portion of the varying species thus affected would increase at the expense of those portions which were more fertile when crossed. Each further variation towards infertility between the two forms would be again preserved, and thus the incipient infertility of the hybrid offspring might be increased till it became so great as almost to amount to sterility. Yet further, we have seen that if several competing species in the same area were being simultaneously modified, those between whose varieties infertility arose would have an advantage over those whose varieties remained fertile inter se, and would ultimately supplant them.

The preceding argument, it will be seen, depends entirely upon the assumption that some amount of infertility characterises the distinct varieties which are in process of differentiation into species; and it may be objected that of such infertility there is no proof. This is admitted; but it is urged that facts have been adduced which render such infertility probable, at least in some cases, and this is all that is required. It is by no means necessary that all varieties should exhibit incipient infertility, but only, some varieties; for we know that, of the innumerable varieties that occur but few become developed into distinct species, and it may be that the absence of infertility, to obviate the effects of intercrossing, is one of the usual causes of their failure. All I have attempted to show is, that when incipient infertility does occur in correlation with other varietal differences, that infertility can be, and in fact must be, increased by natural selection; and this, it appears to me, is a decided step in advance in the solution of the problem.[62]

Physiological Selection.

Another form of infertility has been suggested by Professor G.J. Romanes as having aided in bringing about the characteristic infertility or sterility of hybrids. It is founded on the fact, already noticed, that certain individuals of some species possess what may be termed selective sterility—that is, while fertile with some individuals of the species they are sterile with others, and this altogether independently of any differences of form, colour, or structure. The phenomenon, in the only form in which it has been observed, is that of "infertility or absolute sterility between two individuals, each of which is perfectly fertile with all other individuals;" but Mr. Romanes thinks that "it would not be nearly so remarkable, or physiologically improbable, that such incompatibility should run through a whole race or strain."[63] Admitting that this may be so, though we have at present no evidence whatever in support of it, it remains to be considered whether such physiological varieties could maintain themselves, or whether, as in the cases of sporadic infertility already discussed, they would necessarily die out unless correlated with useful characters. Mr. Romanes thinks that they would persist, and urges that "whenever this one kind of variation occurs it cannot escape the preserving agency of physiological selection. Hence, even if it be granted that the variation which affects the reproductive system in this particular way is a variation of comparatively rare occurrence, still, as it must always be preserved whenever it does occur, its influence in the manufacture of specific types must be cumulative." The very positive statements which I have italicised would lead most readers to believe that the alleged fact had been demonstrated by a careful working out of the process in some definite supposed cases. This, however, has nowhere been done in Mr. Romanes' paper; and as it is the vital theoretical point on which any possible value of the new theory rests, and as it appears so opposed to the self-destructive effects of simple infertility, which we have already demonstrated when it occurs between the intermingled portion of two varieties, it must be carefully examined. In doing so, I will suppose that the required variation is not of "rare occurrence," but of considerable amount, and that it appears afresh each year to about the same extent, thus giving the theory every possible advantage.

Let us then suppose that a given species consists of 100,000 individuals of each sex, with only the usual amount of fluctuating external variability. Let a physiological variation arise, so that 10 per cent of the whole number—10,000 individuals of each sex—while remaining fertile inter se become quite sterile with the remaining 90,000. This peculiarity is not correlated with any external differences of form or colour, or with inherent peculiarities of likes or dislikes leading to any choice as to the pairing of the two sets of individuals. We have now to inquire, What would be the result?