We are now in a position to test some further conclusions of Mr. Lowell's Phil. Mag. article by comparison with actual phenomena. We have seen, in the outline I have given of this article, that he endeavours to show how the small amount of solar heat received by Mars is counterbalanced, largely by the greater transparency to light and heat of its thin and cloudless atmosphere, and partially also by a greater conservative or 'blanketing' power of its atmosphere due to the presence in it of a large proportion of carbonic acid gas and aqueous vapour. The first of these statements may be admitted as a fact which he is entitled to dwell upon, but the second—the presence of large quantities of carbon-dioxide and aqueous vapour is a pure hypothesis unsupported by any item of scientific evidence, while in the case of aqueous vapour it is directly opposed to admitted results founded upon the molecular theory of gaseous elasticity. But, although Mr. Lowell refers to the conservative or 'blanketing' effect of the earth's atmosphere, he does not consider or allow for its very great cumulative effect, as is strikingly shown by the comparison with the actual temperature conditions of the moon. This cumulative effect is due to the continuous reflection and radiation of heat from the clouds as well as from the vapour-laden strata of air in our lower atmosphere, which latter, though very transparent to the luminous and accompanying heat rays of the sun, are opaque to the dark heat-rays whether radiated or reflected from the earth's surface. We are therefore in a position strictly comparable with that of the interior of some huge glass house, which not only becomes intensely heated by the direct rays of the sun, but also to a less degree by reflected rays from the sky and those radiated from the clouds, so that even on a cloudy or misty day its temperature rises many degrees above that of the outer air. Such a building, if of large size, of suitable form, and well protected at night by blinds or other covering, might be so arranged as to accumulate heat in its soil and walls so as to maintain a tolerably uniform temperature though exposed to a considerable range of external heat and cold. It is to such a power of accumulation of heat in our soil and lower atmosphere that we must impute the overwhelming contrast between our climate and that of the moon. With us, the solar heat that penetrates our vapour-laden and cloudy atmosphere is shut in by that same atmosphere, accumulates there for weeks and months together, and can only slowly escape. It is this great cumulative power which Mr. Lowell has not taken account of, while he certainly has not estimated the enormous loss of heat by free radiation, which entirely neutralises the effects of increase of sun-heat, however great, when these cumulative agencies are not present.[12]

[Footnote 12: The effects of this 'cumulative' power of a dense atmosphere are further discussed and illustrated in the last chapter of this book, where I show that the universal fact of steadily diminishing temperatures at high altitudes is due solely to the diminution of this cumulative power of our atmosphere, and that from this cause alone the temperature of Mars must be that which would be found on a lofty plateau about 18,000 feet higher than the average of the peaks of the Andes!]

Temperature on Polar Regions of Mars.

There is also a further consideration which I think Mr. Lowell has altogether omitted to discuss. Whatever may be the mean temperature of Mars, we must take account of the long nights in its polar and high-temperate latitudes, lasting nearly twice as long as ours, with the resulting lowering of temperature by radiation into a constantly clear sky. Even in Siberia, in Lat. 67-1/2°N. a cold of-88°F. has been attained; while over a large portion of N. Asia and America above 60° Lat. the mean January temperature is from-30°F. to-60°F., and the whole subsoil is permanently frozen from a depth of 6 or 7 feet to several hundreds. But the winter temperatures, over the same latitudes in Mars, must be very much lower; and it must require a proportionally larger amount of its feeble sun-heat to raise the surface even to the freezing-point, and an additional very large amount to melt any considerable depth of snow. But this identical area, from a little below 60° to the pole, is that occupied by the snow-caps of Mars, and over the whole of it the winter temperature must be far lower than the earth-minimum of-88°F. Then, as the Martian summer comes on, there is less than half the sun-heat available to raise this low temperature after a winter nearly double the length of ours. And when the summer does come with its scanty sun-heat, that heat is not accumulated as it is by our dense and moisture-laden atmosphere, the marvellous effects of which we have already shown. Yet with all these adverse conditions, each assisting the other to produce a climate approximating to that which the earth would have if it had no atmosphere (but retaining our superiority over Mars in receiving double the amount of sun-heat), we are asked to accept a mean temperature for the more distant planet almost exactly the same as that of mild and equable southern England, and a disappearance of the vast snowfields of its polar regions as rapid and complete as what occurs with us! If the moon, even at its equator, has not its temperature raised above the freezing-point of water, how can the more distant Mars, with its oblique noon-day sun falling upon the snow-caps, receive heat enough, first to raise their temperature to 32° F., and then to melt with marked rapidity the vast frozen plains of its polar regions?

Mr. Lowell is however so regardless of the ordinary teachings of meteorological science that he actually accounts for the supposed mild climate of the polar regions of Mars by the absence of water on its surface and in its atmosphere. He concludes his fifth chapter with the following words: "Could our earth but get rid of its oceans, we too might have temperate regions stretching to the poles." Here he runs counter to two of the best-established laws of terrestrial climatology— the wonderful equalising effects of warm ocean-currents which are the chief agents in diminishing polar cold; the equally striking effects of warm moist winds derived from these oceans, and the great storehouse of heat we possess in our vapour-laden atmosphere, its vapour being primarily derived from these same oceans! But, in Mr. Lowell's opinion, all our meteorologists are quite mistaken. Our oceans are our great drawbacks. Only get rid of them and we should enjoy the exquisite climate of Mars—with its absence of clouds and fog, of rain or rivers, and its delightful expanses of perennial deserts, varied towards the poles by a scanty snow-fall in winter, the melting of which might, with great care, supply us with the necessary moisture to grow wheat and cabbages for about one-tenth, or more likely one-hundredth, of our present population. I hope I may be excused for not treating such an argument seriously. The various considerations now advanced, especially those which show the enormous cumulative and conservative effect of our dense and water-laden atmosphere, and the disastrous effect—judging by the actual condition of the moon—which the loss of it would have upon our temperature, seem to me quite sufficient to demonstrate important errors in the data or fallacies in the complex mathematical argument by which Mr. Lowell has attempted to uphold his views as to the temperature and consequent climatic conditions of Mars. In concluding this portion of my discussion of the problem of Mars, I wish to call attention to the fact that my argument, founded upon a comparison of the physical conditions of the earth and moon with those of Mars, is dependent upon a small number of generally admitted scientific facts; while the conclusions drawn from those facts are simple and direct, requiring no mathematical knowledge to follow them, or to appreciate their weight and cogency. I claim for them, therefore, that they are in no degree speculative, but in their data and methods exclusively scientific. In the next chapter I will put forward a suggestion as to how the very curious markings upon the surface of Mars may possibly be interpreted, so as to be in harmony with the planet's actual physical condition and its not improbable origin and past history.

CHAPTER VII.

A SUGGESTION AS TO THE 'CANALS' OF MARS.

The special characteristics of the numerous lines which intersect the whole of the equatorial and temperate regions of Mars are, their straightness combined with their enormous length. It is this which has led Mr. Lowell to term them 'non-natural features.' Schiaparelli, in his earlier drawings, showed them curved and of comparatively great width. Later, he found them to be straight fine lines when seen under the best conditions, just as Mr. Lowell has always seen them in the pure atmosphere of his observatory. Both of these observers were at first doubtful of their reality, but persistent observation continued at many successive oppositions compelled acceptance of them as actual features of the planet's disc. So many other observers have now seen them that the objection of unreality seems no longer valid.

Mr. Lowell urges, however, that their perfect straightness, their extreme tenuity, their uniformity throughout their whole length, the dual character of many of them, their relation to the 'oases' and the form and position of these round black spots, are all proofs of artificiality and are suggestive of design. And considering that some of them are actually as long as from Boston to San Francisco, and relatively to their globe as long as from London to Bombay, his objection that "no natural phenomena within our knowledge show such regularity on such a scale" seems, at first, a mighty one.

It is certainly true that we can point to nothing exactly like them either on the earth or on the moon, and these are the only two planetary bodies we are in a position to compare with Mars. Yet even these do, I think, afford us some hints towards an interpretation of the mysterious lines. But as our knowledge of the internal structure and past history even of our earth is still imperfect, that of the moon only conjectural, and that of Mars a perfect blank, it is not perhaps surprising that the surface-features of the latter do not correspond with those of either of the others.