associated with alpine forms of Germanic, Siberian, Oriental, Chinese, American, Malayan, and finally Australian, and Antarctic types; but whereas these are all, more or less, local assemblages, the Scandinavian asserts his prerogative of ubiquity from Britain to beyond its antipodes."[[189]]

It is impossible to place the main facts more forcibly before the reader than in the above striking passage. It shows clearly that this portion of the New Zealand flora is due to wide-spread causes which have acted with even greater effect in other south temperate lands, and that in order to explain its origin we must grapple with the entire problem of the transfer of the north temperate flora to the southern hemisphere. Taking, therefore, the facts as given by Sir Joseph Hooker in the works already referred to, I shall discuss the whole question broadly, and shall endeavour to point out the general laws and subordinate causes that, in my opinion, have been at work in bringing about the anomalous phenomena of distribution he has done so much to make known and to elucidate.

Aggressive Power of the Scandinavian Flora.—The first important fact bearing upon this question is the wonderful aggressive and colonising power of the Scandinavian flora, as shown by the way in which it establishes itself in any temperate country to which it may gain access. About 150 species have thus established themselves in New Zealand, often taking possession of large tracts of country; about the same number are found in Australia, and nearly as many in the Atlantic states of America, where they form the commonest weeds. Whether or not we accept Mr. Darwin's explanation of this power as due to development in the most extensive land area of the globe where competition has been most severe and long-continued, the fact of the existence of this power remains, and we can see how important an agent it must be in the formation of the floras of any lands to which these aggressive plants have been able to gain access.

But not only are these plants pre-eminently capable of holding their own in any temperate country in the world, but they also have exceptional powers of migration and

dispersal over seas and oceans. This is especially well shown by the case of the Azores, where no less than 400 out of a total of 478 flowering plants are identical with European species. These islands are more than 800 miles from Europe, and, as we have already seen in Chapter XII., there is no reason for supposing that they have ever been more nearly connected with it than they are now, since an extension of the European coast to the 1,000-fathom line would very little reduce the distance. Now it is a most interesting and suggestive fact that more than half the European genera which occur in the Australian flora occur also in the Azores, and in several cases even the species are identical in both.[[190]] The importance of such a case as this cannot be exaggerated, because it affords a demonstration of the power of the very plants in question to pass over wide areas of sea, some no doubt wholly through the air, carried by storms in the same way as the European birds and insects which annually reach the Azores, others by floating on the waters, or by a combination of the two methods; while some may have been carried by aquatic birds, to whose feathers many seeds have the power of attaching themselves, and some even in the stomachs of fruit or seed eating birds. We have in such facts as these a complete disproof of the necessity for those great changes of sea and land which are continually appealed to by those who think land-connection the only efficient means of accounting for the migration of animals or plants; but at the same time we do not neglect to make the fullest use of such moderate changes as all the evidence at our command leads us to believe have actually occurred, and especially of the former existence of intermediate islands, so often indicated by shoals in the midst of the deepest oceans.

Means by which Plants have migrated from North to South.—But if plants can thus pass in considerable numbers and variety over wide seas and oceans, it must be yet more easy for them to traverse continuous areas of land, whereever mountain-chains offer suitable stations at moderate

intervals on which they might temporarily establish themselves. The facilities afforded for the transmission of plants by mountains has hardly received sufficient attention. The numerous land-slips, the fresh surfaces of broken rock and precipice, the debris of torrents, and the moraines deposited by glaciers, afford numerous unoccupied stations on which wind-borne seeds have a good chance of germinating. It is a well-known fact that fresh surfaces of soil or rock, such as are presented by railway cuttings and embankments, often produce plants strange to the locality, which survive for a few years, and then disappear as the normal vegetation gains strength and permanence.[[191]] But such a surface

will, in the meantime, have acted as a fresh centre of dispersal; and thus a plant might pass on step by step, by means of stations temporarily occupied, till it reached a district

where, the general conditions being more favourable, it was able to establish itself as a permanent member of the flora. Such, generally speaking, was probably the process by which the Scandinavian flora has made its way to the southern hemisphere; but it could hardly have done so to any important extent without the aid of those powerful causes explained in our eighth chapter—causes which acted as a constantly recurrent motive-power to produce that "continuous current of vegetation" from north to south across the whole width of the tropics referred to by Sir Joseph Hooker. Those causes were, the repeated changes

of climate which, during all geological time, appear to have occurred in both hemispheres, culminating at rare intervals in glacial epochs, and which have been shown to depend upon changes of excentricity of the earth's orbit and the occurrence of summer or winter in aphelion, in conjunction with the slower and more irregular changes of geographical conditions; these combined causes acting chiefly through the agency of heat-bearing oceanic currents, and of snow- and ice-collecting highlands. Let us now briefly consider how such changes would act in favouring the dispersal of plants.