The Nebulæ

One other great result of spectrum-analysis, and in some respects perhaps the greatest, is its demonstration of the fact that true nebulæ exist, and that they are not all star-clusters so remote as to be irresolvable, as was once supposed. They are shown to have gaseous spectra, or sometimes gaseous and stellar spectra combined, and this, in connection with the fact that nebulæ are frequently aggregated around nebulous stars or groups of stars, renders it certain that the nebulæ are in no way separated in space from the stars, but that they constitute essential parts of one vast stellar universe. There is, indeed, good reason to believe that they are really the material out of which stars are made, and that in their forms, aggregations, and condensations, we can trace the very process of evolution of stars and suns.

Photographic Astronomy

But there is yet another powerful engine of research which the new astronomy possesses, and which, either alone or in combination with the spectroscope, had produced and will yet produce in the future an amount of knowledge of the stellar universe which could never be attained by any other means. It has already been stated how the discovery of new variable and binary stars has been rendered possible by the preservation of the photographic plates on which the spectra are self-recorded, night after night, with every line, whether dark or coloured, in true position, so as to bear magnification, and, by comparison with others of the series, enabling the most minute changes to be detected and their amount accurately measured. Without the preservation of such comparable records, which is in no other way possible, by far the larger portion of spectroscopic discoveries could never have been made.

But there are two other uses of photography of quite a different nature which are equally and perhaps in their final outcome may be far more important. The first is, that by the use of the photographic plate the exact positions of scores, hundreds, or even thousands of stars can be self-mapped simultaneously with extreme accuracy, while any number of copies can be made of these star-maps. This entirely obviates the necessity for the old method of fixing the position of each star by repeated measurement by means of very elaborate instruments, and their registration in laborious and expensive catalogues. So important is this now seen to be, that specially constructed cameras are made for stellar photography, and by means of the best kinds of equatorial mounting are made to revolve slowly so that the image of each star remains stationary upon the plate for several hours.

Arrangements have been now made among all the chief observatories of the world to carry out a photographic survey of the heavens with identical instruments, so as to produce maps of the whole star-system on the same scale. These will serve as fixed data for future astronomers, who will thus be able to determine the movements of stars of all magnitudes with a certainty and accuracy hitherto unattainable.

The other important use of photography depends upon the fact that with a longer exposure within certain limits we increase the light-collecting power. It will surprise many persons to learn that an ordinary good portrait-camera with a lens three or four inches in diameter, if properly mounted so that an exposure of several hours can be made, will show stars so minute that they are invisible even in the great Lick telescope. In this way the camera will often reveal double-stars or small groups which can be made visible in no other way.

Such photographs of the stars are now constantly reproduced in works on Astronomy and in popular magazine articles, and although some of them are very striking, many persons are disappointed with them, and cannot understand their great value, because each star is represented by a white circle often of considerable size and with a somewhat undefined outline, not by a minute point of light as stars appear in a good telescope. But the essential matter in all such photographs is not so much the smallness, as the roundness, of the star-images, as this proves the extreme precision with which the image of every star has been kept by the clockwork motion of the instrument on the same point of the plate during the whole exposure. For example, in the fine photograph of the Great Nebula in Andromeda, taken 29th December 1888, by Dr. Isaac Roberts, with an exposure of four hours, there are probably over a thousand stars large and small to be seen, every one represented by an almost exactly circular white dot of a size dependent on the magnitude of the star. These round dots can be bisected by the cross hairs of a micrometer with very great accuracy, and thus the distance between the centres of any of the pairs, as well as the direction of the line joining their centres, can be determined as accurately as if each was represented by a point only. But as a minute white speck would be almost invisible on the maps, and would convey no information as to the approximate magnitude of the star, mistakes would be much more easily made, and it would probably be found necessary to surround each star with a circle to indicate its magnitude, and to enable it to be easily seen. It is probable, therefore, that the supposed defect is really an important advantage. The above-mentioned photograph is beautifully reproduced in Proctor's Old and New Astronomy, published after his greatly lamented death.

But besides the amount of altogether new knowledge obtained by the methods of research here briefly explained, a great deal of light has been thrown on the distribution of the stars as a whole, and hence on the nature and extent of the stellar universe, by a careful study of the materials obtained by the old methods, and by the application of the doctrine of probabilities to the observed facts. In this way alone some very striking results have been reached, and these have been supported and strengthened by the newer methods, and also by the use of new instruments in the measurement of stellar distances. Some of these results bear so closely and directly upon the special subject of the present volume, that our next chapter must be devoted to a consideration of them.