Zones of GalacticAverage number of Star
North Polar Distance.per Field of 15'.
0° to 15°4.32
>15° to 30°5.42
30° to 45°8.21
45° to 60°13.61
60° to 75°24.09
75° to 90°53.43
Zones of GalacticAverage number of Stars
South Polar Distance.per Field of 15'.
0° to 15°6.05
15° to 30°6.62
30° to 45°9.08
45° to 60°13.49
60° to 75°26.29
75° to 90°59.06

In these tables the Milky Way itself is taken as occupying two zones of 15° each, instead of one of 20° as in Professor Newcomb's tables, so that the excess in the number of stars over the other zones is not so large. They show also a slight preponderance in all the zones of the southern hemisphere, but this is not great, and may probably be due to the clearer atmosphere of the Cape of Good Hope as compared with that of England.

DIAGRAM OF STAR-DENSITY.

From Table in Sir J. Herschel's Outlines of Astronomy (10th ed., pp. 577-578).

It need only be noted here that this diagram shows the same general features as those already given, of a continuous increase of star-density from the poles of the Galaxy, but more rapidly as the Galaxy itself is more nearly approached. This fact must, therefore, be accepted as indisputable.

Clusters and Nebulæ in Relation to the Galaxy

An important factor in the structure of the heavens is afforded by the distribution of the two classes of objects known as clusters and nebulæ. Although we can form an almost continuous series from double stars which revolve round their common centre of gravity, through triple and quadruple stars, to groups and aggregations of indefinite extent—of which the Pleiades form a good example, since the six stars visible to the naked eye are increased to hundreds by high telescopic powers, while photographs with three hours' exposure show more than 2000 stars—yet none of these correspond to the large class known as clusters, whether globular or irregular, which are very numerous, about 600 having been recorded by Sir John Herschel more than fifty years ago. Many of these are among the most beautiful and striking objects in the heavens even with a very small telescope or good opera-glass. Such is the luminous spot called Praesepe, or the Beehive in the constellation Cancer, and another in the sword handle of Perseus.

In the southern hemisphere there is a hazy star of about the fourth magnitude, Omega Centauri, which with a good telescope is seen to be really a magnificent cluster nearly two-thirds the diameter of the moon, and described by Sir John Herschel as very gradually increasing in brightness to the centre, and composed of innumerable stars of the thirteenth and fifteenth magnitudes, forming the richest and largest object of the kind in the heavens. He describes it as having rings like lace-work formed of the larger stars. By actual count, on a good photograph, there are more than 6000 stars, while other observers consider that there are at least 10,000. In the northern hemisphere one of the finest is that in the constellation Hercules, known as 13 Messier. It is just visible to the naked eye or with an opera glass as a hazy star of the sixth magnitude, but a good telescope shows it to be a globular cluster, and the great Lick telescope resolves even the densest central portion into distinct stars, of which Sir John Herschel considered there were many thousands. These two fine clusters are figured in many of the modern popular works on astronomy, and they afford an excellent idea of these beautiful and remarkable objects, which, when more thoroughly studied, will probably aid in elucidating some of the obscure problems connected with the constitution and development of the stellar universe.