Throughout the earlier portion of the nineteenth century every increase of power and of light-giving qualities of telescopes added so greatly to the number of the stars which became visible, that it was generally assumed that this increase would go on indefinitely, and that the stars were really infinite in number and could not be exhausted. But of late years it has been found that the increase in the number of stars visible in the larger telescopes was not so great as might be expected, while in many parts of the heavens a longer exposure of the photographic plate adds comparatively little to the number of stars obtained by a shorter exposure with the same instrument.
Mr. J.E. Gore's testimony on this point is very clear. He says:—'Those who do not give the subject sufficient consideration, seem to think that the number of the stars is practically infinite, or at least, that the number is so great that it cannot be estimated. But this idea is totally incorrect, and due to complete ignorance of telescopic revelations. It is certainly true that, to a certain extent, the larger the telescope used in the examination of the heavens, the more the number of the stars seems to increase; but we now know that there is a limit to this increase of telescopic vision. And the evidence clearly shows that we are rapidly approaching this limit. Although the number of stars visible in the Pleiades rapidly increases at first with increase in the size of the telescope used, and although photography has still further increased the number of stars in this remarkable cluster, it has recently been found that an increased length of exposure—beyond three hours—adds very few stars to the number visible on the photograph taken at the Paris Observatory in 1885, on which over two thousand stars can be counted. Even with this great number on so small an area of the heavens, comparatively large vacant places are visible between the stars, and a glance at the original photograph is sufficient to show that there would be ample room for many times the number actually visible. I find that if the whole heavens were as rich in stars as the Pleiades, there would be only thirty-three millions in both hemispheres.'
Again, referring to the fact that Celoria, with a telescope showing stars down to the eleventh magnitude, could see almost exactly the same number of stars near the north pole of the Galaxy as Sir William Herschel found with his much larger and more powerful telescope, he remarks: 'Their absence, therefore, seems certain proof that very faint stars do not exist in that direction, and that here, at least, the sidereal universe is limited in extent.'
Sir John Herschel notes the same phenomena, stating that even in the Milky Way there are found 'spaces absolutely dark and completely void of any star, even of the smallest telescopic magnitude'; while in other parts 'extremely minute stars, though never altogether wanting, occur in numbers so moderate as to lead us irresistibly to the conclusion that in these regions we see fairly through the starry stratum, since it is impossible otherwise (supposing their light not intercepted) that the numbers of the smaller magnitudes should not go on continually increasing ad infinitum. In such cases, moreover, the ground of the heavens, as seen between the stars, is for the most part perfectly dark, which again would not be the case if innumerable multitudes of stars, too minute to be individually discernible, existed beyond.' And again he sums up as follows:—'Throughout by far the larger portion of the extent of the Milky Way in both hemispheres, the general blackness of the ground of the heavens on which its stars are projected, and the absence of that innumerable multitude and excessive crowding of the smallest visible magnitudes, and of glare produced by the aggregate light of multitudes too small to affect the eye singly, which the contrary supposition would appear to necessitate, must, we think, be considered unequivocal indications that its dimensions in directions where these conditions obtain, are not only not infinite, but that the space-penetrating power of our telescopes suffices fairly to pierce through and beyond it.'[2]
This expression of opinion by the astronomer who, probably beyond any now living, was the most competent authority on this question, to which he devoted a long life of observation and study extending over the whole heavens, cannot be lightly set aside by the opinions or conjectures of those who seem to assume that we must believe in an infinity of stars if the contrary cannot be absolutely proved. But as not a particle of evidence can be adduced to prove infinity, and as all the facts and indications point, as here shown, in a directly opposite direction, we must, if we are to trust to evidence at all in this matter, arrive at the conclusion that the universe of stars is limited in extent.
Dr. Isaac Roberts gives similar evidence as regards the use of photographic plates. He writes:—'Eleven years ago photographs of the Great Nebula in Andromeda were taken with the 20-inch reflector, and exposures of the plates during intervals up to four hours; and upon some of them were depicted stars to the faintness of 17th to 18th magnitude, and nebulosity to an equal degree of faintness. The films of the plates obtainable in those days were less sensitive than those which have been available during the past five years, and during this period photographs of the nebula with exposures up to four hours have been taken with the 20-inch reflector. No extensions of the nebulosity, however, nor increase in the number of the stars can be seen on the later rapid plates than were depicted upon the earlier slower ones, though the star-images and the nebulosity have greater density on the later plates.'
Exactly similar facts are recorded in the cases of the Great Nebula in Orion, and the group of the Pleiades. In the case of the Milky Way in Cygnus photographs have been taken with the same instrument, but with exposures varying from one hour to two hours and a half, but no fainter stars could be found on one than on the other; and this fact has been confirmed by similar photographs of other areas in the sky.
The Law of Diminishing Numbers of Stars
We will now consider another kind of evidence equally weighty with the two already adduced. This is what may be termed the law of diminishing numbers beyond a certain magnitude, as observed by larger and larger telescopes.
For some years past star-magnitudes have been determined very accurately by means of careful photometric comparisons. Down to the sixth magnitude stars are visible to the naked eye, and are hence termed lucid stars. All fainter stars are telescopic, and continuing the magnitudes in a series in which the difference in luminosity between each successive magnitude is equal, the seventeenth magnitude is reached and indicates the range of visibility in the largest telescopes now in existence. By the scale now used a star of any magnitude gives nearly two and a half times as much light as one of the next lower magnitude, and for accurate comparison the apparent brightness of each star is given to the tenth of a magnitude which can easily be observed. Of course, owing to differences in the colour of stars, these determinations cannot be made with perfect accuracy, but no important error is due to this cause. According to this scale a sixth magnitude star gives about one-hundredth part of the light of an average first magnitude star. Sirius is so exceptionally bright that it gives nine times as much light as a standard or average first magnitude star.