But, besides the true P. Polytes, there are several allied forms of females to be considered, namely, P. Theseus, Cr., P. Melanides, De Haan, P. Elyros, G. R. G., and P. Romulus, L. The dark female figured by Cramer as P. Theseus seems to be the common and perhaps the only form in Sumatra, whereas in Java, Borneo, and Timor, along with males quite identical with those of Sumatra, occur females of the Polytes form, although a single specimen of the true P. Theseus, Cr., taken at Lombock would seem to show that the two forms do occur together. In the allied species found in the Philippine ♀Islands (P. Alphenor, Cr., P. Ledebouria, Eschsch., ♀ P. Elyros, G. R. G.) forms corresponding to these extremes occur along with a number of intermediate varieties, as shown by a fine series in the British Museum. We have here an indication of how dimorphism may be produced; for let the extreme Philippine forms be better suited to their conditions of existence than the intermediate connecting links, and the latter will gradually die out, leaving two distinct forms of the same insect, each adapted to some special conditions. As these conditions are sure to vary in different districts, it will often happen, as in Sumatra and Java, that the one form will predominate in the one island, the other in the adjacent one. In the island of Borneo there seems to be a third form; for P. Melanides, De Haan, evidently belongs to this group, and has all the chief characteristics of P. Theseus, with a modified coloration of the hind wings. I now come to an insect which, if I am correct, offers one of the most interesting cases of variation yet adduced. Papilio Romulus, L., a butterfly found over a large part of India and Ceylon, and not uncommon in collections, has always been considered a true and independent species, and no suspicions have been expressed regarding it. But a male of this form does not, I believe, exist. I have examined the fine series in the British Museum, in the East India Company’s Museum, in the Hope Museum at Oxford, in Mr. Hewitson’s and several other private collections, and can find nothing but females; and for this common butterfly no male partner can be found except the equally common P. Pammon, a species already provided with two wives, and yet to whom we shall be forced, I believe, to assign a third. On carefully examining P. Romulus, I find that in all essential characters,—the form and texture of the wings, the length of the antennæ, the spotting of the head and thorax, and even the peculiar tints and shades with which it is ornamented,—it corresponds exactly with the other females of the Pammon group; and though, from the peculiar marking of the fore wings, it has at first sight a very different aspect, yet a closer examination shows that every one of its markings could be produced by slight and almost imperceptible modifications of the various allied forms. I fully believe, therefore, that I shall be correct in placing P. Romulus as a third Indian form of the female P. Pammon, corresponding to P. Melanides, the third form of the Malayan P. Theseus. I may mention here that the females of this group have a superficial resemblance to the Polydorus group, as shown by P. Theseus having been considered to be the female of P. Antiphus, and by P. Romulus being arranged next to P. Hector. There is no close affinity between these two groups of Papilio, and I am disposed to believe that we have here a case of mimicry, brought about by the same causes which Mr. Bates has so well explained in his account of Heliconidæ, and which thus led to the singular exuberance of polymorphic forms in this and allied groups of the genus Papilio. I shall have to devote a section of my paper to the consideration of this subject.

The third example of polymorphism I have to bring forward is Papilio Ormenus, Guér., which is closely allied to the well-known P. Erechtheus, Don., of Australia. The most common form of the female also resembles that of P. Erechtheus; but a totally different-looking insect was found by myself in the Aru Islands, and figured by Mr. Hewitson under the name of P. Onesimus, which subsequent observation has convinced me is a second form of the female of P. Ormenus. Comparison of this with Boisduval’s description of P. Amanga, a specimen of which from New Guinea is in the Paris Museum, shows the latter to be a closely similar form; and two other specimens were obtained by myself, one in the island of Goram and the other in Waigiou, all evidently local modifications of the same form. In each of these localities males and ordinary females of P. Ormenus were also found. So far there is no evidence that these light-coloured insects are not females of a distinct species, the males of which have not been discovered. But two facts have convinced me this is not the case. At Dorey, in New Guinea, where males and ordinary females closely allied to P. Ormenus occur (but which seem to me worthy of being separated as a distinct species), I found one of these light-coloured females closely followed in her flight by three males, exactly in the same manner as occurs (and, I believe, occurs only) with the sexes of the same species. After watching them a considerable time, I captured the whole of them, and became satisfied that I had discovered the true relations of this anomalous form. The next year I had corroborative proof of the correctness of this opinion by the discovery in the island of Batchian of a new species allied to P. Ormenus, all the females of which, either seen or captured by me, were of one form, and much more closely resembling the abnormal light-coloured females of P. Ormenus and P. Pandion than the ordinary specimens of that sex. Every naturalist will, I think, agree that this is strongly confirmative of the supposition that both forms of female are of one species; and when we consider, further, that in four separate islands, in each of which I resided for several months, the two forms of female were obtained and only one form of male ever seen, and that about the same time M. Montrouzier in Woodlark Island, at the other extremity of New Guinea (where he resided several years, and must have obtained all the large Lepidoptera of the island), obtained females closely resembling mine, which, in despair at finding no appropriate partners for them, he mates with a widely different species,—it becomes, I think, sufficiently evident that this is another case of polymorphism of the same nature as those already pointed out in P. Pammon and P. Memnon. This species, however, is not only dimorphic, but trimorphic; for, in the island of Waigiou, I obtained a third female quite distinct from either of the others, and in some degree intermediate between the ordinary female and the male. The specimen is particularly interesting to those who believe, with Mr. Darwin, that extreme difference of the sexes has been gradually produced by what he terms sexual selection, since it may be supposed to exhibit one of the intermediate steps in that process which has been accidentally preserved in company with its more favoured rivals, though its extreme rarity (only one specimen having been seen to many hundreds of the other form) would indicate that it may soon become extinct.

The only other case of polymorphism in the genus Papilio, at all equal in interest to those I have now brought forward, occurs in America; and we have, fortunately, accurate information about it. Papilio Turnus, L., is common over almost the whole of temperate North America; and the female resembles the male very closely. A totally different-looking insect both in form and colour, Papilio Glaucus, L., inhabits the same region; and though, down to the time when Boisduval published his ‘Species Général,’ no connexion was supposed to exist between the two species, it is now well ascertained that P. Glaucus is a second female form of P. Turnus. In the ‘Proceedings of the Entomological Society of Philadelphia,’ Jan. 1863, Mr. Walsh gives a very interesting account of the distribution of this species. He tells us that in the New England States and in New York all the females are yellow, while in Illinois and further south all are black; in the intermediate region both black and yellow females occur in varying proportions. Lat. 37° is approximately the southern limit of the yellow form, and 42° the northern limit of the black form; and, to render the proof complete, both black and yellow insects have been bred from a single batch of eggs. He further states that, out of thousands of specimens, he has never seen or heard of intermediate varieties between these forms. In this interesting example we see the effects of latitude in determining the proportions in which the individuals of each form should exist. The conditions are here favourable to the one form, there to the other; but we are by no means to suppose that these conditions consist in climate alone. It is highly probable that the existence of enemies, and of competing forms of life, may be the main determining influences; and it is much to be wished that such a competent observer as Mr. Walsh would endeavour to ascertain what are the adverse causes which are most efficient in keeping down the numbers of each of these contrasted forms.

Dimorphism of this kind in the animal kingdom does not seem to have any direct relations to the reproductive powers, as Mr. Darwin has shown to be the case in plants, nor does it appear to be very general. One other case only is known to me in another family of my eastern Lepidoptera, the Pierulæ; and but few occur in the Lepidoptera of other countries. The spring and autumn broods of some European species differ very remarkably; and this must be considered as a phenomenon of an analogous though not of an identical nature[[3]]. Araschnia prorsa, of Central Europe, is a striking example of this alternate or seasonal dimorphism. Mr. Pascoe has pointed out two forms of the male sex in some species of Coleoptera belonging to the family Anthribidæ, in seven species of the two genera Xenocerus and Mecocerus (Proc. Ent. Soc. Lond., 1862, p. 71); and no less than six European Water-beetles, of the genus Dytiscus, have females of two forms, the most common having the elytra deeply sulcate, the rarer smooth as in the males. The three, and sometimes four or more, forms under which many Hymenopterous insects (especially Ants) occur must be considered as a related phenomenon, though here each form is specialized to a distinct function in the economy of the species. Among the higher animals, albinoism and melanism may, as I have already stated, be considered as analogous facts; and I met with one case of a bird, a species of Lory (Eos fuscata, Blyth), clearly existing under two forms, since I obtained both sexes of each from a single flock.

[3]. Among our nocturnal Lepidoptera, I am informed, many analogous cases occur; and as the whole history of many of these has been investigated by breeding successive generations from the egg, it is to be hoped that some of our British Lepidopterists will give us a connected account of all the abnormal phenomena which they present.

The fact of the two sexes of one species differing very considerably is so common, that it attracted but little attention till Mr. Darwin showed how it could in many cases be explained by what he termed sexual selection. For instance, in most polygamous animals the males fight for the possession of the females, and the victors, always becoming the progenitors of the succeeding generation, impress upon their male offspring their own superior size, strength, or unusually developed offensive weapons. It is thus that we can account for the spurs and the superior strength and size of the males in Gallinaceous birds, and also for the large canine tusks in the males of fruit-eating Apes. So the superior beauty of plumage and special adornments of the males of so many birds can be explained by supposing (what there are many facts to prove) that the females prefer the most beautiful and perfect-plumaged males, and that thus slight accidental variations of form and colour have been accumulated till they have produced the wonderful train of the Peacock and the gorgeous plumage of the Bird of Paradise. Both these causes have no doubt acted partially in insects, so many species possessing horns and powerful jaws in the male sex only, and still more frequently the males alone rejoicing in rich colours or sparkling lustre. But there is here another cause which has led to sexual differences, viz. a special adaptation of the sexes to diverse habits or modes of life. This is well seen in female Butterflies (which are generally weaker and of slower flight), often having colours better adapted to concealment; and in certain South American species (Papilio torquatus) the females, which inhabit the forests, resemble the Æneas group, which abound in similar localities, while the males, which frequent the sunny open riverbanks, have a totally different coloration. In these cases, therefore, natural selection seems to have acted independently of sexual selection; and all such cases may be considered as examples of the simplest dimorphism, since the offspring never offer intermediate varieties between the parent forms.

The distinctive character therefore of dimorphism is this, that the union of these distinct forms does not produce intermediate varieties, but reproduces them unchanged. In simple varieties, on the other hand, as well as when distinct local forms or distinct species are crossed, the offspring never resembles either parent exactly, but is more or less intermediate between them. Dimorphism is thus seen to be a specialized result of variation, by which new physiological phenomena have been developed; the two should therefore, whenever possible, be kept separate[[4]].

[4]. The phenomena of dimorphism and polymorphism may be well illustrated by supposing that a blue-eyed, flaxen-haired Saxon man had two wives, one a black-haired, red-skinned Indian squaw, the other a woolly-headed, sooty-skinned negress—and that instead of the children being mulattoes of brown or dusky tints, mingling the separate characteristics of their parents in varying degrees, all the boys should be pure Saxon boys like their father, while the girls should altogether resemble their mothers. This would be thought a sufficiently wonderful fact; yet the phenomena here brought forward as existing in the insect-world are still more extraordinary; for each mother is capable not only of producing male offspring like the father, and female like herself, but also of producing other females exactly like her fellow-wife, and altogether differing from herself. If an island could be stocked with a colony of human beings having similar physiological idiosyncrasies with Papilio Pammon or Papilio Ormenus, we should see white men living with yellow, red, and black women, and their offspring always reproducing the same types; so that at the end of many generations the men would remain pure white, and the women of the same well-marked races as at the commencement.

3. Local form, or variety.—This is the first step in the transition from variety to species. It occurs in species of wide range, when groups of individuals have become partially isolated in several points of its area of distribution, in each of which a characteristic form has become segregated more or less completely. Such forms are very common in all parts of the world, and have often been classed as varieties or species alternately. I restrict the term to those cases where the difference of the forms is very slight, or where the segregation is more or less imperfect. The best example in the present group is Papilio Agamemnon, L., a species which ranges over the greater part of tropical Asia, the whole of the Malay archipelago, and a portion of the Australian and Pacific regions. The modifications are principally of size and form, and, though slight, are tolerably constant in each locality. The steps, however, are so numerous and gradual that it would be impossible to define many of them, though the extreme forms are sufficiently distinct. Papilio Sarpedon, L., presents somewhat similar but less numerous variations.

4. Coexisting variety.—This is a somewhat doubtful case. It is when a slight but permanent and hereditary modification of form exists in company with the parent or typical form, without presenting those intermediate gradations which would constitute it a case of simple variability. It is evidently only by direct evidence of the two forms breeding separately that this can be distinguished from dimorphism. The difficulty occurs in Papilio Jason, Esp., and P. Evemon, Bd., which inhabit the same localities, and are almost exactly alike in form, size, and coloration, except that the latter always wants a very conspicuous red spot on the under surface, which is found not only in P. Jason, but in all the allied species. It is only by breeding the two insects that it can be determined whether this is a case of a coexisting variety or of dimorphism. In the former case, however, the difference being constant and so very conspicuous and easily defined, I see not how we could escape considering it as a distinct species. A true case of coexisting forms would, I consider, be produced, if a slight variety had become fixed as a local form, and afterwards been brought into contact with the parent species with little or no intermixture of the two; and such instances do very probably occur.