Past and Present Distribution of Land and Sea.—Before proceeding to give details as to the distribution of animals, it is necessary to point out certain geographical features which have had great influence in bringing about the existing state of things.

The extreme inequality with which land and water is distributed has often been remarked, but what is less frequently noted is the singular way in which all the great masses of land are linked together. Notwithstanding the small proportion of land to water, the vast difference in the quantity of land in the northern and southern hemispheres, and the apparently hap-hazard manner in which it is spread over the globe, we yet find that no important area is completely isolated from the rest. We may even travel from the extreme north of Asia to the three great southern promontories—Cape Horn, the Cape of Good Hope, and Tasmania—without ever going out of sight of land; and, if we examine a terrestrial globe, we find that the continents in their totality may be likened to a huge creeping plant, whose roots are at or around the North Pole, whose matted stems and branches cover a large part of the northern hemisphere, while it sends out in three directions great offshoots towards the South Pole. This singular arrangement of the land surface into what is practically one huge mass with diverging arms, offers great facilities for the transmission of the varied forms of animal life over the whole earth, and is no doubt one of the chief causes of the essential unity of type which everywhere characterises the existing animal and vegetable productions of the globe.

There is, moreover, good reason to believe that the general features of this arrangement are of vast antiquity; and that throughout much of the Tertiary period, at all events, the relative positions of our continents and oceans have remained the same, although they have certainly undergone some changes in their extent, and in the degree of their connection with each other. This is proved by two kinds of evidence. In the first place, it is now ascertained by actual measurement that the depths of the great oceans are so vast over wide areas, while the highest elevations of the land are limited to comparatively narrow ridges, that the mass of land (above the sea-level) is not more than ¹⁄₃₆th part of the mass of the ocean. Now we have reason to believe that subsidence and elevation bear some kind of proportion to each other, whence it follows that although several mountain ranges have risen to great heights during the Tertiary period, this amount of elevation bears no proportion to the amount of subsidence required to have changed any considerable area of what was once land into such profound depths as those of the Atlantic or Pacific Oceans. In the second place, we find over a considerable area of all the great continents fresh-water deposits containing the remains of land animals and plants; which deposits must have been formed in lakes or estuaries, and which therefore, speaking generally, imply the existence in their immediate vicinity of land areas comparable to those which still exist. The Miocene deposits of Central and Western Europe, of Greece, of India, and of China, as well as those of various parts of North America, strikingly prove this; while the Eocene deposits of London and Paris, of Belgium, and of various parts of North and South America, though often marine, yet by their abundant remains of land-animals and plants, equally indicate the vicinity of extensive continents. For our purpose it is not necessary to go further back than this, but there is much evidence to show that throughout the Secondary, and even some portion of the Palæozoic periods, the land-areas coincided to a considerable extent with our existing continents. Professor Ramsay has shown[64] that not only the Wealden formation, and considerable portions of the Upper and Lower Oolite, but also much of the Trias, and the larger part of the Permian, Carboniferous, and Old Red Sandstone formations, were almost certainly deposited either in lakes, inland seas, or extensive estuaries. This would prove that, throughout the whole of the vast epochs extending back to the time of the Devonian formation, our present continents have been substantially in existence, subject, no doubt, to vast fluctuations by extension or contraction, and by various degrees of union or separation, but never so completely submerged as to be replaced by oceans comparable in depth with our Atlantic or Pacific.

[64] Nature, 1873, p. 333; Quarterly Journal of the Geological Society, 1871, pp. 189 and 241.

This general conclusion is of great importance in the study of the geographical distribution of animals, because it bids us avoid the too hasty assumption that the countless anomalies we meet with are to be explained by great changes in the distribution of land and sea, and leads us to rely more on the inherent powers of dispersal which all organisms possess, and on the union or disruption, extension or diminution, of existing lands—but always in such directions and to such a limited extent as not to involve the elevation of what are now the profoundest depths of the great oceans.

Zoological Regions.—We will now proceed to sketch out the zoological features of the six great biological regions; and will afterwards discuss their probable changes during the more recent geographical periods, in accordance with the principles here laid down.

The Palæarctic Region.

The Palæarctic, or North Temperate region of the Old World, is not only by far the most extensive of the zoological regions, but is the one which agrees least with our ordinary geographical divisions. It includes the whole of Europe, by far the largest part of Asia, and a considerable tract of North Africa; yet over the whole of this vast area there prevails a unity of the forms of animal life which renders any primary subdivision of it impossible, and even secondary divisions difficult. But besides being the largest of the great zoological regions, there are good reasons for believing this to represent the most ancient, and therefore the most important centre of the development of the higher forms of animal life,—and it is therefore well to consider it first in order.

In enumerating the most important animal groups characteristic of this and other regions, it must be clearly understood that such groups are not always absolutely confined to one region. Here and there they will often overlap the boundaries, while in other cases single species may have a wide distribution in one or more of the adjacent regions; but this does not at all affect the main fact, that the group as a whole is very abundant and very widely spread over the region in question, while it is very rare, or confined to a very limited area in adjacent regions, and is therefore specially characteristic of the one as compared with other parts of the world. Bearing this in mind, we shall find that the Palæarctic region is well characterized by a considerable number of typical groups, although, as we shall presently see, it has in recent geological times lost much of its ancient richness and variety of animal life.

Among Mammalia the groups most characteristic of this region are the moles (Talpidæ), a family consisting of eight distinct genera which range over the whole region, but beyond it barely enter the Oriental region in North India, and the Nearctic region in North-West America; camels, confined to the deserts of North Africa and Asia; sheep and goats (Capra), only found beyond the region in the Nilgherries and Rocky Mountains; several groups of antelopes, and many peculiar forms of deer; hamsters (Cricetus), sand rats (Psammomys), mole rats (Spalax), and pikas (Lagomys), with several other forms of rodents. Wolves, foxes, and bears, are also very characteristic, though by no means confined to the region.