These facts compel us to believe that at distinct epochs during the Tertiary period the interchange of large mammalia between North America and the Old World has been far more easy than it is now. In the Post-Pliocene period, for example, the horses, elephants, and camels of North America and Europe were so closely allied that their common ancestors must have passed from one continent to the other, just as we feel assured that the common ancestors of the American and European bison, elk, and beaver, must have so migrated. We have further evidence in the curious fact that certain groups appear to come into existence in the one continent much later than in the other. Thus cats, deer, mastodons, true horses, porcupines, and beavers, existed in Europe long before they appeared in America; and as the theory of evolution does not admit the independent development of the same group in two disconnected regions to be possible, we are forced to conclude that these animals have migrated from one continent to the other. Camels, and perhaps ancestral horses, on the other hand, were more abundant and more ancient in America, and may have migrated thence into Northern Asia.
There are two probable routes for such migrations. From Norway to Greenland by way of Iceland and across Baffin Bay to Arctic America, there is everywhere a comparatively shallow sea, and it is not improbable that during the Miocene period, or subsequently, a land communication may have existed here. On the other side of the continent, at Behring Straits, the probability is greater. For here we have a considerable extent of far shallower sea, which a very slight elevation would convert into a broad isthmus connecting North America and North-East Asia. It is true that elephants, horses, deer, and camels would, under existing climatal conditions, hardly range as far north as Greenland and Alaska; but we must remember that most mysterious yet indisputable fact of the luxuriant vegetation, including even magnolias and other large-leaved evergreens, which flourished in these latitudes during the Miocene period; so that we have all the conditions of favourable climate and abundant food, which would render such interchange of the animals of the two continents not only possible, but inevitable, whenever a land communication was effected; and there is reason to believe that this favourable condition of things continued in a diminished degree during a portion of the succeeding Pliocene period.
We must not forget, however, that the faunas of the two continents were always to a great extent distinct and contrasted—such important Old-World groups as the civets, hyænas, giraffes, and hippopotami, never passing to America, while the extinct Oreodontidæ, Brontotheridæ, and many others are equally unknown in the Old World. This renders it probable that the communication even in the north was never of long continuance; while it wholly negatives the theory of an Atlantis bridging over the Atlantic Ocean in the Temperate Zone at any time during the whole Tertiary period.
But the past history of the North American fauna is complicated by another set of migrations from South America, which, like those from the Old World, appear to have occurred at distant intervals, and to have continued for limited periods. In the Post-Pliocene epoch, along with elephants and horses from Europe or Asia, we find a host of huge sloths and other Edentata, as well as llamas, capybaras, tapirs, and peccaries, all characteristic of South America. Some of these were identical with living species, while others are closely allied to those found fossil in Brazilian caves and other deposits of about the same age, while nothing like them inhabited the Old World at the same period. We are therefore quite sure that they came from some part of the Neotropical region; but the singular fact is, that in the preceding Pliocene epoch none of them are found in North America. We conclude, therefore, that their migration took place at the end of the Pliocene or beginning of the Post-Pliocene epoch, owing to some specially favourable conditions, but that they rapidly disappeared, having left no survivors. We must, however, study the past history of South America in order to ascertain how far it has been isolated from or connected with the northern continent.
Abundant remains of the Post-Pliocene epoch from Brazilian caves show us that the fauna of South America which immediately preceded that now existing had the same general characteristics, but was much richer in large mammalia and probably in many other forms of life. Edentata formed the most prominent feature; but instead of the existing sloths, armadillos, and ant-eaters, there were an immense variety of these animals, some of living genera, others altogether different, and many of them of enormous size. There were armadillos as large as the rhinoceros, while the megatherium and several other genera of extinct sloths were of elephantine bulk. The peculiar families of South American rodents—cavies, spiny-rats, and chinchillas—were represented by other species and genera, some of large size; and the same may be said of the monkeys, bats, and carnivora. Among Ungulata, however, we find, in addition to the living tapirs, llamas, peccaries, and deer, several species of horse and antelope, as well as a mastodon, all three forms due probably to recent immigration from the northern continent.
Further south, in Bolivia, the Pampas, and Patagonia, we also find abundant fossil remains, probably a little older than the cave fauna of Brazil, and usually referred to the newer part of the Pliocene period. The same families of rodents and Edentata are here abundant, many of the genera being the same but several new ones also appearing. There are also horses, peccaries, a mastodon, llamas, and deer; but besides these there are a number of altogether peculiar forms, such as the Macrauchenia, allied to the Tapir and Palæotherium; the Homalodontotherium, allied to the Miocene Hyracodon of North America; and the Toxodontidæ, a group of very large animals having affinities to Ungulates, rodents, Edentata, and Sirenia, and therefore probably the representative of a very ancient type.
Here then we meet with a mixture of highly developed and recent, with low and ancient types, but the latter largely predominate; and the most probable explanation seems to be that the same concurrence of favourable conditions which allowed the megatherium and megalonyx to enter North America also led to an immigration of horses, deer, mastodons, and many of the Felidæ into South America. These inter-migrations appear to have taken place at several remote intervals, the northern and southern continents being for the most part quite separated, and each developing its own peculiar forms of life. This view is supported by the curious fact of a large number of the marine fishes of the two sides of Central America being absolutely identical—implying a recent union of the two oceans and separation of the continents—while the mollusca of the Pacific coast of America bear so close a relation to those of the Caribbean Sea and the Atlantic coasts, as to indicate a somewhat more remote but longer continued sea-passage. The straits connecting the two oceans were probably situated in Nicaragua and to the south of Panama, leaving the highlands of Mexico and Guatemala united to North America.
Around the Gulf of Mexico and the Caribbean Sea there is a wide belt of rather shallow water, and during the alternate elevations and subsidences to which this region has been subjected, the newly raised land would afford a route for the passage of immigrants between North and South America. The great depression of the ocean, believed to have occurred during the Glacial period (caused by the locking-up of the water in the two polar masses of ice), may perhaps have afforded the opportunity for those latest immigrations which gave so striking a character to the North American fauna in Post-Pliocene times.
Among the changes which South America itself has undergone, perhaps the most important has been its separation into a group of large islands. Such a change is clearly indicated by the immense area and low elevation of the great alluvial plains of the Orinoko, Amazon, and La Plata, as well as by certain features in the distribution of the existing Neotropical fauna. A subsidence of less than 2,000 feet would convert the highlands of Guiana and Brazil into islands separated by a shallow strait from the chain of the Andes. When this occurred the balance of the land was probably restored by an elevation of the extensive submerged banks on the east coast of South America, which in South Brazil and Patagonia are several hundred miles wide, embracing the Falkland Islands, and reaching far to the south of Cape Horn.
Looking, then, at the whole of the evidence at our command, we seem justified in concluding that the past histories of North and South America have been different, and in some respects strongly contrasted. North America was evidently in very early times so far connected with Europe and Asia as to interchange with those continents the higher types of animal life as they were successively developed in either hemisphere. These more perfectly organised beings rapidly gained the ascendency, and led to the extinction of most of the lower forms which had preceded them. The Nearctic has thus run a course parallel to that of the Palæarctic region, although its fauna is, and perhaps always has been, less diversified and more subject to incursions of lower types from adjacent lands in the southern hemisphere.