Fig. 42.—10,000 H. P. 12,000 Volt Generator in Canadian Power-house at Niagara Falls.

[Larger illustration] (176 kB)

Under heads of much more than 100 feet pressure turbines operate at rather high speeds in all except very large sizes. It is much the more common to see water-wheels at a lower speed belted to dynamos at a higher speed; but in some instances, as at the lighting plant of Spokane, Wash., wheels of a higher speed are belted to dynamos of a lower speed. Another plan by which moderate dynamo speeds are obtained with water-wheels under rather high heads mounts a dynamo at each end of the shaft of a large turbine or pair of turbines. This plan is followed at the plant of the Royal Aluminum Company, Shawinigan Falls, Quebec, where there are two pairs of horizontal turbine wheels, each pair developing 3,200 horse-power under a head of 125 feet, and driving a dynamo direct-coupled on each end of its shaft. Where vertical wheels are employed it is sometimes more desirable to drive some standard type of dynamo with horizontal shaft by means of bevel gears than to design a special dynamo to mount directly on the vertical shaft. This latter plan is warranted in very large work like that at two of the Niagara Falls generating stations, where the twenty-one 3,750-kilowatt dynamos are direct-connected, each on the vertical shaft of a turbine. This type of connection is not one that will be frequently followed, but at one other point—Portland, Ore.—each dynamo is mounted directly on the shaft of its vertical turbine wheel.

Where water-wheels must operate under heads of several hundred feet, it is usually necessary to abandon pressure turbines and to adopt one of the types of impulse-wheels. In this class of wheels the peripheral speed of highest efficiency is only one-half the spouting velocity of the water under any particular head. This gives the impulse-wheels about two-thirds the peripheral speed of pressure turbines of equal diameter and consequently about two-thirds as many revolutions per minute. But as the water may be applied at one or more points on the circumference of an impulse-wheel, as desired, such wheels may have much greater diameters than pressure turbines for equal power under a given head.

Fig. 43.—Generators in Power-station at Mechanicsville on the Hudson River.

Fig. 44.—Generators at Chamblay, Quebec, Power-house.

These properties of low peripheral speed, as to head and great diameter, as to power developed, fit impulse-wheels for direct-connection to dynamos where great heads of water must be employed, and they are generally used in such cases. This is particularly true for the Pacific coast, where water-powers depend more on great heads than on large volumes. In the generating plant of the Bay Counties’ Power Company, at Colgate, Cal., the dynamos are direct-connected to impulse-wheels that operate under a head of 700 feet. The three 2,250-kilowatt dynamos in this plant are each mounted on a wheel shaft operating at 285 revolutions per minute, and each of the four 1,125-kilowatt dynamos is direct-driven by an impulse-wheel at 400 revolutions per minute. At the Electra, Cal., plant of the Standard Electric Company the impulse-wheels operate at 240 revolutions per minute under a head of 1,450 feet. Each of the five pairs of these wheels drives a 2,000-kilowatt generator, direct-connected. As the head of water at these wheels is 1,450 feet, its spouting velocity is about 300 feet per second, or 18,000 feet per minute. Each wheel is eleven feet in diameter, so that a speed of 240 revolutions per minute gives the periphery a little less than 9,000 feet per minute, or about one-half of the spouting velocity of the water. These two great plants are excellent illustrations of the way in which impulse-wheels, under great heads, may be given speeds that are suitable for direct-connected dynamos.