The inner end of the line stop should set against the first matrix on the left end of the line after the line has been justified. Do not set the clamp lock-nut tight or it will not allow the line stop to move when changing to a longer measure.
FIRST ELEVATOR SLIDE CONNECTING LINK
The first elevator slide connecting link is the connection between the first elevator slide and the first elevator lever, and is fastened to the slide by a pin extending through an eyebolt and to the first elevator lever by a wing pin extending through an eyebolt.
The first elevator jaws should not be more than 1/64 of an inch lower than the grooves in the delivery channel. Make this adjustment by turning the connecting link casing.
The connecting link is constructed of a casing or tube, inside of which is a compression spring. This spring is held in place at the bottom by a movable nut inside of the lower end of the casing, and by a screw cap at the top of the casing. The movable nut has a slot on one side which fits over a pin in the casing. This prevents the nut from turning except when the casing is turned. The casing also has a screw cap on the lower end, through which an eyebolt passes. The lower eyebolt screws into the movable nut inside the casing, against which the spring rests. At the top of the casing is another eyebolt which screws into the top screw cap.
The upper eyebolt is ¾ of an inch from the inner edge of the hole to the shoulder of the upper cap, and the lower eyebolt 13/16 of an inch from the inner edge of the hole to the shoulder of the bushing when applied to the machine, making 8½ inches from center to center of the holes in the eyebolts. The lower eyebolt is 1/16 of an inch longer than the upper eyebolt. As the upper eyebolt has a left-hand thread and the lower eyebolt a right-hand thread, the lower eyebolt still remains 1/16 of an inch longer than the upper eyebolt, and still retains the same compression on the spring when it becomes necessary to turn the connecting link a trifle to raise or lower the elevator.
The alignment of the matrices takes place as the elevator raises the lugs of the matrices up against the aligning groove of the mold. By the lower eyebolt passing through the clearance hole in the screw cap when the alignment takes place, the lower nut is lifted against the spring inside the casing and the spring compresses just enough to align the lugs of the matrices in the groove of the mold. This holds the line against the mold by spring tension. If the connecting link was a solid piece, when the line was raised to the mold it would lock so tight that in a short time the lugs would be worn, causing a bad alignment of the matrices. The object of the spring inside the casing is to prevent this wear. Having the lower eyebolt 1/16 of an inch longer than the upper, the correct compression of the spring is given. The elevator, when it raises from the vise for alignment with no matrices, is raised nearly ⅓ of an inch. Notice the difference with a line of matrices in the elevator. It is held at the mold by the lugs of the matrices, the compression spring in the link taking up the extra motion of the first elevator lever.
Auxiliary Lever
The distance from center to center of the holes should measure 8½ inches when the link has been properly adjusted. If the first elevator jaws do not come within 1/64 of an inch of aligning with delivery slide channel after the connecting link has been adjusted and applied to the machine, adjust the slide with the auxiliary lever. This is necessary to compensate for wear on the face of cam No. 1 and the auxiliary lever roller. By loosening the connecting screw in the side of the auxiliary lever, make the adjustment by turning the adjusting screw in the front side of the auxiliary lever. Never try to make this adjustment with the connecting screw tight, as the lug of the auxiliary lever is liable to be broken.