(b) The principal factor in the calculation of the machine rate, in fact, the real key to a successful calculation, is in establishing a standard of work-hours for each machine. It is noted that the higher the standard, the lower will be the rate, and the lower the hours operated, the higher will be the rate; in other words, when the machine is idle in excess of the standard, the rate changes. In some shops where the output is a stable product, always in demand, and the machine in continuous operation, a good estimate may be made, but in most shops a machine is frequently idle on account of "no work" or "laid up" for repairs the same as is its operator. The practice in most shops is such that it is extremely difficult to estimate ahead what the work-hours of a machine will be, and it resolves itself generally into an intelligent guess with two estimators far apart in their estimates, yet a satisfactory distribution requires a standard which will work out in figures close to the actual facts.
Who can successfully estimate ahead for any time the activity of each machine in a large factory? Our factory engineers are at wide variance on this point. One authority says "full time," 300 days a year, is the proper basis for calculation. It would seem as if this were rather an unusual position to take; it apparently being his belief that the time idle would be offset by the time the machine was operated overtime, or else he expected the machinery once put in motion to neither shut down, nor break down. Either appears to be rather a dangerous assumption on which to base a careful calculation for rate of distribution.
Another engineer says 80% of a full day will be found to be the maximum, and further adds: "It will doubtless fall much below that figure." One naturally asks "How much lower?" There is quite a large field of figures to choose from between an 80% activity and a dead standstill for the machine.
It is quite unnecessary to attempt to demonstrate at length that the work-hour standard may be a very elastic figure, and it is often found that after distribution has been made, the results are very unsatisfactory and the machine rates used have proved "way off."
(c) Again, having settled on the work-hour standard, other adjustments appear necessary to equitably handle the machine rate question. For instance, two machines may be of the same book valuation and in cost of operation practically alike, yet one may be far more efficient than the other and possibly turn out two or three times as much work. This condition is constantly found in different shops, and whether or not the two machines should carry the same rate, and, if not, how this inequality shall be adjusted, forms a very interesting question for discussion.
(d) It is noted that the essentials in the calculation of machine rates are all based on estimates which may or may not prove correct; that positive book figures are lacking; and that the calculations are made on assumptions. One of the best professional opinions noted is that expressed by one of our leading accountants, who, commenting on the question of machine rates, observes that "it begins with estimating and is estimating all the way through." This appears to be rather severe criticism, yet one has but to give the subject careful consideration to note that it quite correctly sums up the situation in a few words.
As previously stated, the machine-rate method is without doubt theoretically correct, but, until the subject has been more thoroughly elucidated and worked out in all its details to fit shop conditions and furnish a satisfactory means of distributing expense, it is doubtful if it will be used to any great extent. This method certainly requires an elaboration of system and detail, with questionable results, and with many serious objections apparent; it seems pertinent, therefore, to ask the question "Is it worth while; cannot something better be devised?"
10. The Percent Method. A third plan of distribution, commonly referred to as the percentage method, differs from the two already outlined, in which the time employed was the basis of operation, in that the rate of distribution is a percentage on the direct labor cost of the product, which is, of course, commensurate with the amount of time expended. In the first division of our subject, it was shown that expense figured on direct labor would prove the most reliable.
This method is based on the principle that the production of each department of a plant should shoulder its own expense, and also a share of the general expense. In other words, the cost of the output from the Blacksmith Department, for instance, would be the total productive labor of the department, plus the material used, plus the operating expense of the department, plus its share of the general expense of the whole plant. It is only necessary, then, to establish the relation between the productive labor and the expense, and express the same in a percentage. It is immaterial how many departments or processes there may be in the factory; this relation should be found in each case, based on its own productive labor and expense, each department having its own percentage ascertained from its own actual conditions; no estimating about it. The expense, then, is figured on the labor cost. If, in the Blacksmith Department already referred to, it is found that the expense at which the department is operated is one-fourth of its total productive pay-roll for the same period, it is at once apparent that if to the labor cost of every productive job, 25% is added for shop expense, the total of these expense items added will equal the total expense of the department. In other words, the shop expense is split up and added to each job in proportion to the labor expended on it.
The general expense is handled the same way. If the total general expense is found to be one-third of the total productive labor in the plant, it is likewise apparent that, if to the labor of every productive job, 33⅓% is added to cover general expense, the sum total of these percentage items added will equal the total general expense of the plant.