To face page
Lord Kelvin (photogravure)[Frontispiece]
Lord Kelvin in 1846[64]
View of Old College[70]

LORD KELVIN

CHAPTER I

PARENTAGE AND EARLY EDUCATION

Lord Kelvin came of a stock which has helped to give to the north of Ireland its commercial and industrial supremacy over the rest of that distressful country. His ancestors were county Down agriculturists of Scottish extraction. His father was James Thomson, the well-known Glasgow Professor of Mathematics, and author of mathematical text-books which at one time were much valued, and are even now worth consulting. James Thomson was born on November 13, 1786, near Ballynahinch, county Down. Being the son of a small farmer he was probably unable to enter on university studies at the usual age, for he did not matriculate in Scotland until 1810. The class-lists of the time show that he distinguished himself highly in mathematics, natural philosophy, and classics.

An interesting incident of these student days of his father was related by Lord Kelvin in his installation address as Chancellor of the University in 1904, and is noteworthy as indicating how comparatively recent are many of the characteristics of our present-day life and commerce. James Thomson and some companions, walking from Greenock to Glasgow, on their way to join the college classes at the commencement of the session, "saw a prodigy—a black chimney moving rapidly beyond a field on the left-hand side of their road. They jumped the fence, ran across the field, and saw, to their astonishment, Henry Bell's 'Comet' (then not a year old) travelling on the Clyde between Glasgow and Greenock."[1] Sometimes then the passage from Belfast to Greenock took a long time. Once James Thomson, crossing in an old lime-carrying smack, was three or four days on the way, in the course of which the vessel, becalmed, was carried three times by the tide round Ailsa Craig.

Mr. Thomson was elected in 1815 to the Professorship of Mathematics in the Royal Academical Institution of Belfast, and held the post for seventeen years, building up for himself an excellent reputation as a teacher, and as a clear and accurate writer. Just then analytical methods were beginning to supersede the processes of geometrical demonstration which the form adopted by Newton for the Principia had tended to perpetuate in this country. Laplace was at the height of his fame in France, and was writing the great analytical Principia, his Mécanique Céleste, applying the whole force of his genius, and all the resources of the differential and integral calculus invented by Newton and improved by the mathematicians of the intervening century, to the elucidation and extension of the "system of the world," which had been so boldly sketched by the founder of modern physical science.