The galvanometer was replaced later by another invention of Professor Thomson—the siphon recorder. Here a small and delicate pen was formed by a piece of very fine glass tube (vaccination tubing, in fact) in the form of a siphon, of which the shorter end dipped into an ink-bottle, while the other end wrote the message in little zig-zag notches on a ribbon of paper drawn past it by machinery. The siphon was moved to and fro by the signalling currents, which flowed in a small coil hung between the poles of an electromagnet, excited by a local battery, and the ink was spirted in a succession of fine drops from the pen to the paper. This was accomplished by electrifying the ink-bottle and ink by a local electrical machine, and keeping the paper in contact with an uninsulated metal roller. Electric attraction between the electrified ink and the unelectrified paper thus drew the ink-drops out, and the pen, which never touched the paper, was quite unretarded by friction. Both these instruments had the inestimable advantage that the to and fro motions of the spot of light or the pen took place independently of ordinary earth-currents through the cable.

The arrangement of magnet and suspended coil in this instrument has become widely known as that of the "d'Arsonval galvanometer." This application was anticipated by Thomson, and is distinctly mentioned in his recorder patent, long before such galvanometers were ever used. It was later proposed by several experimenters before M. d'Arsonval.

It is not too much to say that, by his discussion of the speed of signalling, his services as an electrical engineer, and especially by his invention of instruments capable of responding to very feeble currents, Thomson made submarine telegraphy commercially possible. Later he entered into partnership with Mr. C. F. Varley and Professor Fleeming Jenkin. A combination of inventions was made by the firm: Varley had patented a method of signalling by condensers, and Jenkin later suggested and patented an automatic key for "curb-sending" on a cable—that is, signalling by placing one pole of the battery for an interval a little shorter than the usual one to the line, and then reversing the battery for the remainder. This gave sharper signals, as the reversal helped to discharge the cable more rapidly than it would have been by the mere connection to earth between two signals. The firm of Thomson, Varley & Jenkin took a prominent part in cable work; and Thomson and Jenkin acted as engineers for many large undertakings. They employed a staff of young electricians at the cable-works at Millwall and elsewhere, keeping watch over the cable during manufacture, and sent them to sea as representatives and assistants to perform similar duties during the process of cable-laying. On their staff were many men who have come to eminence in electrical and engineering pursuits in later life.

Mariners' Compass and Sounding Machine

After the earlier Atlantic expeditions Sir William Thomson turned his attention to the construction of navigational instruments, and invented the mariner's compass and wire-sounding apparatus which are now so well known. He had come to the conclusion that the compasses in use had much too large needles (some of them bar-magnets seven or eight inches long!) to respond quickly and certainly to changes of course, and, what was still more serious, to admit of the application of correcting magnets, and of masses of soft-iron to annul the action of the magnetism of the ship.

The compass card consists of a paper ring, on which the "points" and degrees are engraved in the ordinary way, and is kept circular by a light ring of aluminium. Threads of silk extend radially from the rim to a central boss of aluminium in which is a cap of aluminium. In the top of the cap is a sapphire bearing, which rests on an iridium point projecting upward from the compass bowl. Eight magnets of glass-hard steel, from 3¼ inches to 2 inches long, and about the thickness of a knitting-needle, which form the compass needle, are strung like the steps of a rope ladder, on two silk threads attached to four of the radial threads.

The weight of the card is extremely small—only 170½ grains; that is less than 25 of an ounce. But the matter is not merely made small in amount; it is distributed on the whole at a great distance from the axis; consequently the period of free vibration is long, and the card is very steady. The great lightness of the card also causes the error due to friction on the point of support to be very small.

The errors of the compass in an iron ship are mainly the semicircular error and the quadrantal error. We can only briefly indicate how these arise and how they are corrected. The ship's magnetism may be considered as partly permanent, and partly inductive. The former changes only very slowly, the latter alters as the ship changes course and position. For the ship is a combination of longitudinal, transverse, and vertical girders and beams. As a whole it is a great iron or steel girder, but its structure gives it longitudinal, transverse, and vertical magnetisation. This disturbs the compass, which is also affected by the magnetisation of the iron or steel masts and spars, or of iron or steel carried as cargo.

The semicircular error is due to a great extent to permanent magnetism, but also in part to induced magnetism. It is so called because when the ship's head is turned through 360°, the error attains a maximum on two courses 180° apart. It may amount to over 20° in an ordinary iron vessel, and to 30° or 40° in an armour-clad. It is corrected by two sets of steel magnets placed with their centres under the needle in the binnacle. One set have their lengths fore and aft, the others in the thwart-ship direction. These magnets annul the error on the north and south and on the east and west courses, due to the two horizontal components of magnetic force produced mainly by the permanent magnetism of the ship. A regular routine of swinging the ship when marks on the shore (the true bearings of which from the ship are known) are available, is followed for the adjustment.

The quadrantal error is so called because its maxima are found on four compass courses successively a quadrant, or 90°, from one another. It amounts in general to from 5° to 10° at most. It is due to induced magnetism, and is corrected by a pair of soft-iron spheres, placed on the two sides of the compass with their centres in a line transverse to the ship, through the centre of the compass needle. There are, however, exceptional cases in which they are placed in the fore and aft line one afore, the other abaft, the needle. When the quadrantal error has once been annulled it is always zero, for as the induced magnetism changes, so does that of the spheres, and the adjustment remains good. In a new ship the permanent magnetism slowly alters, and so the semicircular correction has to be improved from time to time by changing the magnets.