The earthy and metallic salts afford likewise powerful means for separating albumen from its watery solution, their bases having the property of forming insoluble compounds with it. The more completely they produce this separation, the more effectually do they counteract putrefaction. The alkaline salts also, as common salt, sal ammoniac, saltpetre, and tartar, operate against putrescence, though in a smaller degree, because they do not precipitate the albumen; but, by abstracting a part of its water, they render it less liable to become putrid. Among the earthy salts, alum is the most energetic, as it forms a subsalt which combines with albumen; it is three times more antiseptic than common salt, and from seven to eight times more so than saltpetre. Muriate of soda, however, may be employed along with alum, as is done in the tawing of sheepskins.
The metallic salts operate still more effectually as antiseptics, because they form with albumen still more intimate combinations. Under this head we class the green and red sulphates of iron, the chloride of zinc, the acetate of lead, and corrosive sublimate; the latter, however, from its poisonous qualities, can be employed only on special occasions. Nitrate of silver, though equally noxious to life, is so antiseptic, that a solution containing only 1⁄500 of the salt is capable of preserving animal matters from corruption.
2. Abstraction of water.—Even in those cases where no separation of the albumen takes place in a coagulated form, or as a solid precipitate, by the operation of a substance foreign to the animal juices, putrefaction cannot go on, any more than other kinds of fermentation, in bodies wholly or in a great measure deprived of their water. For the albumen itself runs so much more slowly into putrefaction, the less water it is dissolved in; and in the desiccated state, it is as little susceptible of alteration as any other dry vegetable or animal matter. Hence, the proper drying of an animal substance becomes a universal preventive of putrescence. In this way fruits, herbs, cabbages, fish, flesh, may be preserved from corruption. If the air be not cold and dry enough to cause the evaporation of the fluids before putrescence may come on, the organic substance must be dried by artificial means, as by being exposed in thin slices in properly constructed air-stoves. At temperatures under 140° F., the albumen dries up without coagulation, and may then be re-dissolved in cold water, with its valuable properties unaltered. By such artificial desiccation, if flesh is to be preserved for cooking or boiling, it must not be exposed, however, to so high a degree of heat, which would harden it permanently, like the baked mummies of Egypt. Mere desiccation, indeed, can hardly ever be employed upon flesh. Culinary salt is generally had recourse to, either alone or with the addition of saltpetre or sugar.
These alkaline salts abstract water in their solution, and, consequently, concentrate the aqueous solution of the albumen; whence, by converting the simple watery fluid into salt water, which is in general less favourable to the fermentation of animal matter than pure water, and by expelling the air, they counteract putridity. On this account, salted meat may be dried in the air much more speedily and safely than fresh meat. The drying is promoted by heating the meat merely to such a degree as to consolidate the albumen, and eliminate the superfluous water.
Alcohol operates similarly, in abstracting the water essential to the putrefaction of animal substances, taking it not only from the liquid albumen, but counteracting its decomposition, when mixed among the animal solids. Sugar acts in the same way, fixing in an unchangeable syrup the water which would otherwise be accessory to the fermentation of the organic bodies. The preserves of fruits and vegetable juices are made upon this principle. When animal substances are rubbed with charcoal powder or sand, perfectly dry, and are afterwards freely exposed to the air, they become deprived of their moisture, and will keep for any length of time.
3. Defect of warmth.—As a certain degree of heat is requisite for the vinous fermentation, so is it for the putrefactive. In a damp atmosphere, or in one saturated with moisture, if the temperature stand at from 70° to 80° F., the putrefaction goes on most rapidly; but it proceeds languidly at a few degrees above freezing, and is suspended altogether at that point. The elephants preserved in the polar ices are proofs of the antiseptic influence of low temperature. In temperate climates, ice-houses serve the purpose of keeping meat fresh and sweet for any length of time.
4. Abstraction of oxygen gas.—As the putrefactive decomposition of a body first commences with the absorption of oxygen from the atmosphere, so it may be retarded by the exclusion of this gas. It is not, however, enough to remove the aerial oxygen from the surface of the body, but we must expel all the oxygen that may be diffused among the vessels and other solids, as this portion suffices in general to excite putrefaction, if other circumstances be favourable. The expulsion is most readily accomplished by a moderate degree of heat, which, by expanding the air, evolves it in a great measure, and at the same time favours the fixation of the oxygen in the extractive matter, so as to make it no longer available towards the putrefaction of the other substances. Milk, soup, solution of gelatine, &c., may be kept long in a fresh state, if they be subjected in an air-tight vessel every other day to a boiling heat. Oxygenation may be prevented in several ways: by burning sulphur or phosphorus in the air of the meat receiver; by filling this with compressed carbonic acid; or with oils, fats, syrups, &c., and then sealing it hermetically. Charcoal powder recently calcined is efficacious in preserving meat, as it not only excludes air from the bodies surrounded by it, but intercepts the oxygen by condensing it. When butcher-meat is enclosed in a vessel filled with sulphurous acid, it absorbs the gas, and remains for a considerable time proof against corruption. The same result is obtained if the vessel be filled with ammoniacal gas. At the end of 76 days such meat has still a fresh look, and may be safely dried in the atmosphere.
II. PECULIAR ANTISEPTIC PROCESSES.
Upon the preceding principles and experiments depend the several processes employed for protecting substances from putrescence and corruption. Here we must distinguish between those bodies which may be preserved by any media suitable to the purpose, as anatomical preparations or objects of natural history, and those bodies which being intended for food, can be cured only by wholesome and agreeable means.
A common method for preserving animal substances unchanged in property and texture, is to immerse them in a spirituous liquor containing about 65 or 70 per cent. of real alcohol. Camphor may also be dissolved in it, and as much common salt as its water will take up. A double fold of ox-bladder should be bound over the mouth of the vessel, in order to impede the evaporation of the watery portion of the liquid, and its upper surface should be coated with a turpentine varnish. Undoubtedly a little creosote would be of use to counteract the decomposing influence of the alcohol upon the animal substances. With such an addition, a weaker spirit, containing no more than 30 per cent. of alcohol, would answer the purpose.